Def: Recall that the k-th horn
$$M_{k}^{n}$$
 of Δ^{n} is the union of \overline{O} for it k.
We say this horn is inner if $O < k < n$.
e.g. $\frac{\Lambda_{1}^{2}}{\sqrt{2}} = \frac{\Lambda_{2}^{2}}{\sqrt{2}} = \frac{\Lambda_{2}^{2}}{\sqrt{2}}$

We'll sketch the proof of: =-quasi-categories =
$$\Lambda$$
-quasi-categories
=-qcats = Λ -qcats
This amounts to showing that any lifting problem if ∇X with
 $i \in \{\Xi^n \to \Delta^n \mid n \ge 2\}$ of $\{(\partial \Delta^n \to \Delta^n) \hat{x} (\Delta^n \to J) \mid n \ge 0\}$ can be solved by filling inner horns.
e.g. When $i: \Xi^n \to \Delta^n$, we can complete the spine to Λ_2^n
by filling smaller inner horns (Λ_1^n)
 $i = \frac{2}{3} \int \frac{1}{3} \int \int$

E-quate
$$c \wedge -quates$$
:
We show by induction on n that each inner $\Lambda_{k}^{n} \longrightarrow \Delta^{n}$ is a trivial colibration
in the Joyal model structure.
(So fibrant objects, i.e. $\equiv -quasi-categories$, have the RLP w.r.t. $\Lambda_{k}^{n} \longrightarrow \Delta^{n}$.)
Base case: $\Lambda_{i}^{2} \longrightarrow \Delta^{i}$ is $\equiv^{2} \longrightarrow \Delta^{2}$.
Inductive step: We can factorise the spine inclusion as $\equiv^{n} \longrightarrow \Lambda_{k}^{n} \longrightarrow \Delta^{n}$.
We know $\equiv^{n} \longrightarrow \Delta^{n}$ is a trivial cofibration.
 $\equiv^{n} \longrightarrow \Lambda_{k}^{n}$ is also a trivial cofibration by the inductive hypothesis
since it can be obtained by filling smaller inner horns.
 $\sum_{n=0}^{n} \Lambda_{k}^{n} \longrightarrow \Delta^{n}$ is a trivial cofibration

So, in some sense,
$$\{ \equiv \begin{array}{c} \begin{array}{c} \label{eq:source} So, in some sense, $\{ \equiv \begin{array}{c} \begin{array}{c} \label{eq:source} \label{eq:source} Solution is and $\{ h_k^* \rightarrow \begin{array}{c} \begin{array}{c} \label{eq:source} \label{eq:sour$$