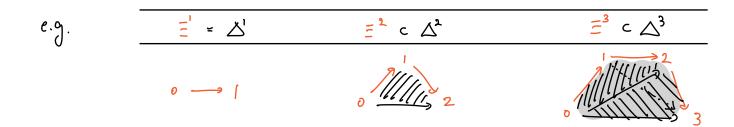
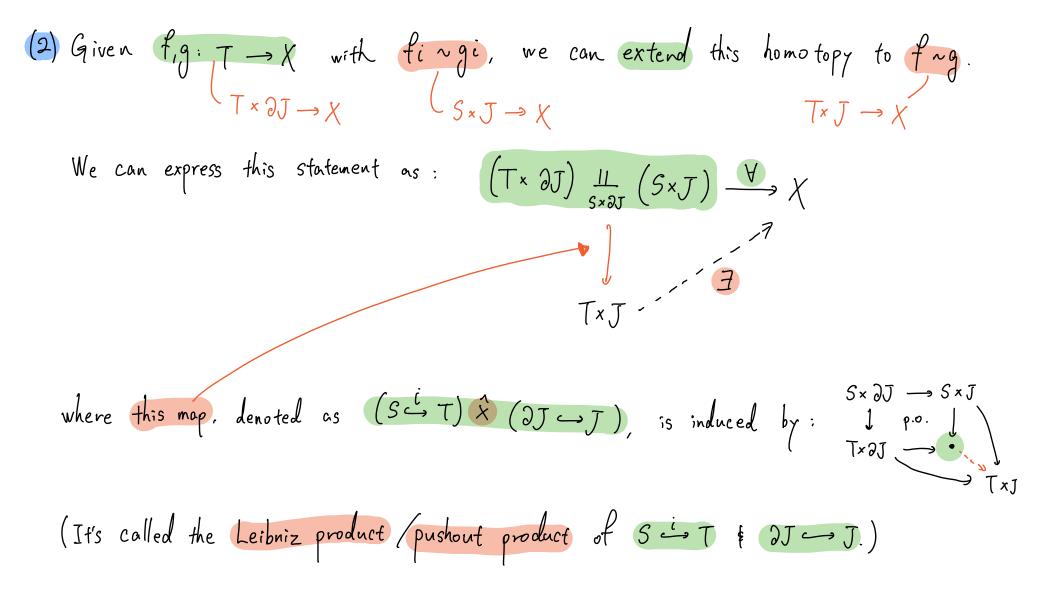
Recall the nerve functor
$$N: Cat \rightarrow sSet$$
 given by
 $(NC)_n = Cat([n], C) = \{ commutative n-simplices in C \}.$
We can characterise the essential image of N using spines.
Def: Fix n=1. For $i \le i \le n$, write $(i: [i] \rightarrow [n])$.
Then the spine of \triangle^n is the union of $(i: i)$.
More precisely, it is the simplicial subset \equiv of \triangle^n given by
 $(=^n)_m = \{ \alpha: [m] \rightarrow [n] \mid \alpha \} \{ \alpha: Cat = 1 \}$



What should we mean by a homotopy in this context?
When we were using simplicial sets to model spaces, a homotopy
$$X \xrightarrow{f} Y$$

was a map $H: X \times \Delta' \rightarrow Y$.
But now we are thinking of simplicial sets as Category-like things so
 $X \times \Delta' \rightarrow Y$ looks like a natural transformation.
A homotopy $H: fag$ should witness that $f \notin g$ are similar, so the closest notion
in category theory is that of natural isomorphism
Def: We write J for the nerve of $\int 0 \ge 1$ is $Cat, 4$ of for $sk_0(J) \ge \Delta' \perp \Delta'$.
A homotopy $H: fag$ between $f_ig: X \rightarrow Y$ in sSet is
 $H: X \times J \rightarrow Y$
s.t. $H(-, 0) = f \notin H(-, 1) = g$.

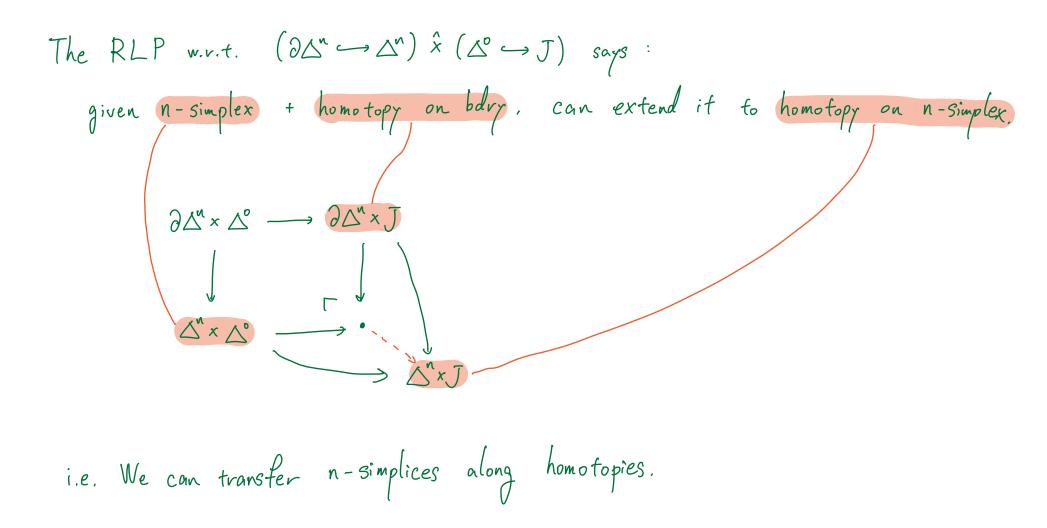
given
$$f_{ig}: T \rightarrow X$$
 with $f_{i} \sim g_{i}$, we can extend this homotopy to $f \sim g_{i}$.



This amounts to asking for lifts:
$$\int J = \hat{J} + \hat{$$

Def: For a set
$$\mathcal{U}$$
 of morphisms in sSet, we write:

$$\mathcal{U} = \left\{ (S \xrightarrow{i} T) \stackrel{\circ}{\times} (\partial J \longrightarrow J) \stackrel{\circ}{\times} | i \in \mathcal{U}, n \ge 0 \right\}$$
often denoted $\Lambda^{\infty}(\mathcal{U})$



Recall the homotopy coherent nerve functor

$$N_{he}: \underline{sSet} \cdot \underline{Cat} \longrightarrow \underline{sSet}$$

 $K \longrightarrow (In) \mapsto \underline{sSet} \cdot \underline{Cat} (Cinj, K))$
 $hom_{EDJ}(i,j) = \begin{cases} \underline{S'x - xA'} & i \leq j \\ j = i - i \end{cases}$
 $F = c^{j}$
 $E = c^{j}$: If $K(X,Y)$ is a Kan complex for all $X,Y \in K$, then $N_{he}(K)$ is a quasi-category
 $E = c^{j}$. $N_{he}(K_{em})$ is a quasi-category. This is the "Ob-category of spaces", and
it's the homotopical counterpart of the ordinary category Set.
In fact, $\underline{sSet} = \underbrace{L}_{N_{he}}$
 $\underline{sSet} \cdot \underline{Cat}$ becomes a Quillen equivalence if we equip:
 $\underline{sSet} \cdot \underline{Cat}$ with Joyal model str.
 $\underline{sSet} \cdot \underline{Cat}$ with Bergner model str.