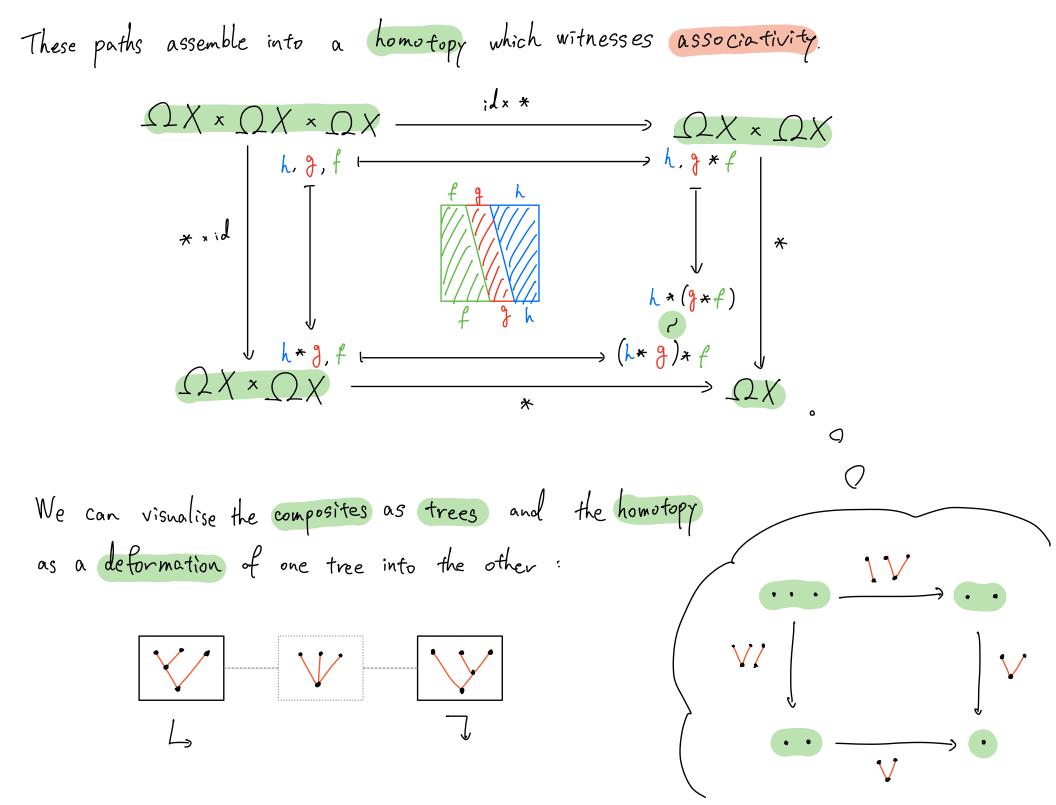
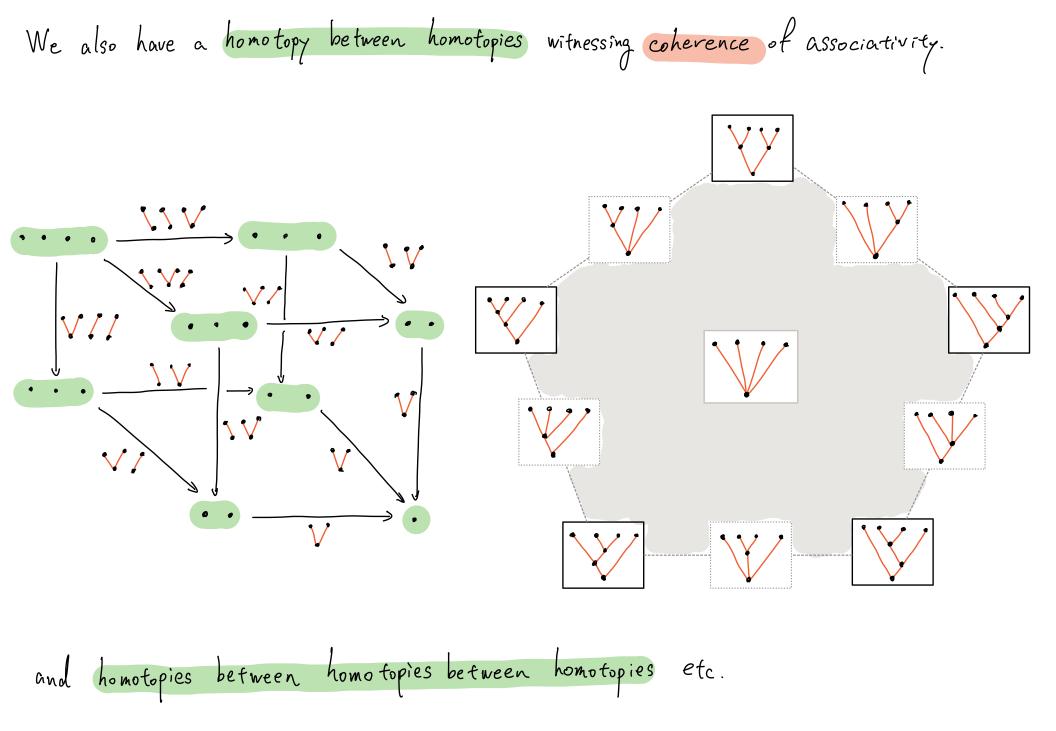
00 - functors should preserve homotopies rather than equalities

Recall the fundamental group:

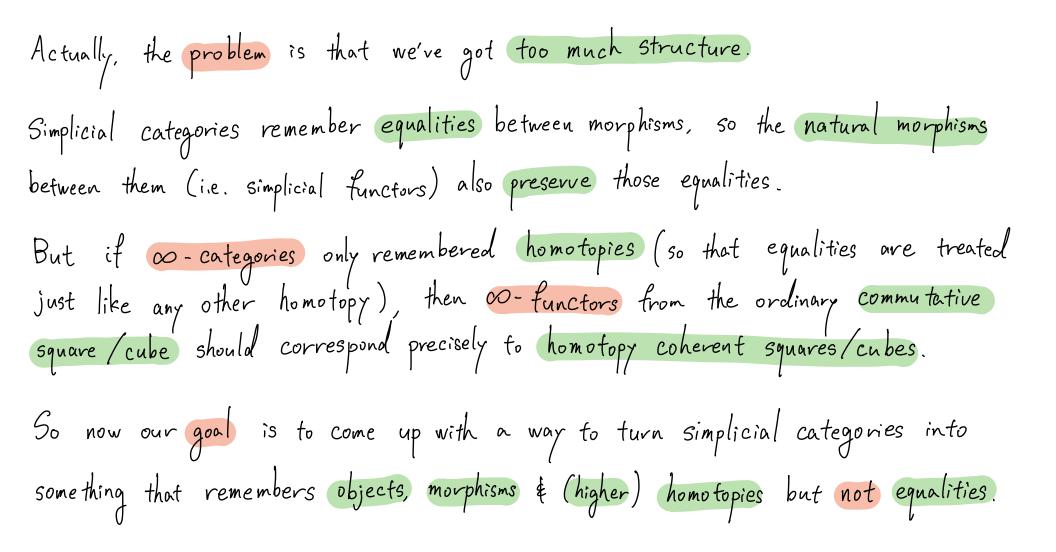
$$T_{L}(X, x) = \{f: I \longrightarrow X \text{ in } \overline{\text{log}} \mid f(o) = f(i) = x\}/\text{endpoint-preserving homotopy}$$
Here we're quotienting by homotopy to make $T_{L}(X, x)$ into a group. Set-based str.
But really the natural thing to consider in the space-based context is ...
Def: Let $X \in \overline{\text{lop}}$ and $x \in X$. The loop space on the pair (X, x) is the set
we'll write $\Omega X = \Omega(X, x) = \{f: I \longrightarrow X \text{ in } \overline{\text{lop}} \mid f(o) = f(i) = x\}$
equipped with suitable topology.
We still have the multiplication $(f(x)) = \{f(as) : f \circ f(as) : f \circ f(as) = 1\}$
associative in the usual sense ; $(h \times g) \times f \notin h \times (g \times f)$ are homotopic as maps $I \rightarrow X$,
which translates to a peth in ΩX .





May be the problem was the lack of direct access to homotopies.
We can solve this using enrichment.
Def: Let 12 be a category with finite products.
A 12-enriched category A is comprised of:
a collection
$$ab(A)$$
 of objects
hom-object home(A, B) $\in 1^{2}$ for A, B $\in ab(A)$
composition home(B, C) $\times home (A, B) \rightarrow home (A, C)$ for A, B, C $\in ab(A)$
unit $1 \rightarrow home(A, A)$ for $A \in ab(A)$
satisfying unit \notin associative laws.
e.g. eset is enriched over itself; the internal home $[X,Y] \in sSee$ is given by
 $[X,Y]_{A} = sSee(X \times A^{A}, Y)$.
In particular, $[X,Y]_{0} \cong sSee(X,Y) \notin [X,Y]_{1}$ is the set of homotopies.
Top can also be enriched over sSee by hometry $(X,Y) = Sing([X,Y])$ in Top.

Both slet 4 Top are simplicial model categories, which essentially means that
the simplicial envichment 4 the model str. capture the same homotopy theory.
So if we set oc-categories = slet-enviched categories, at least we can
directly talk about homotopies.
However, to get homotopy coherent squares/cubes, we have to map out of:
$$("A-X \rightarrow B" means hom(A,B) = X \in slet.)$$



The nerve functor
$$N: Cat \rightarrow sSet$$
 is
given by
 $(N C)_n = Cat([n], C)$.
Here the commutative n-simplex [n] has
objects $0,1, ..., n \notin$
hom $pg(i,j) = \begin{cases} * & if i \leq j \\ p & if i > j \end{cases}$
e.g. 2-simplex $f = h$.

The homotopy coherent nerve functor

$$N_{he}: \underline{sSet} - \underline{Cat} \longrightarrow \underline{sSet} \text{ is given by}$$

$$(N_{he} \mathcal{K})_{n} = \underline{sSet} - \underline{Cat} (\mathcal{EIN}, \mathcal{K})$$
Here the homotopy coherent n-simplex \mathcal{EIN}
has objects 0,1, ..., n \notin
hom_{\mathcal{EIN}}(i,j) = $\begin{cases} ? & \text{if } i=j \\ \emptyset & \text{if } i>j \end{cases}$
e.g. 2-simplex $\underbrace{f_{i}}_{h} = \begin{cases} ? & \text{if } i=j \\ \emptyset & \text{if } i>j \end{cases}$
homotopy $gf \sim h$.

What should homeory (i,j) be for
$$i \leq j$$
?
We want nothing to commute strictly, so different paths from i to j should
give vise to different morphisms from i to j.
 $eg. i a j, i a it i a it i a it i a j, i a it a a it i a it a a i$