

ກ

Def:
$$X \in M$$
 is
Colibrant if $0 \xrightarrow{-} X$ is a colibration easy to map out of
 $e_{j}^{*} \in W - \infty$ in Typ
 $f_{i}^{*} brand$ if $X \xrightarrow{+} 1$ is a fibration easy to map into
 $e_{j}^{*} \in W - \infty$ in Typ
 $f_{i}^{*} = 0$ if $X \xrightarrow{-} 1$ is a fibration easy to map into
 $e_{j}^{*} \in W - \infty$ in Typ
 A colibrant replacement of $X \in M$ is colibrant $QX \in M$ $t/w = QX \xrightarrow{-} X$.
 A fibrant replacement $-$ fibrant $RX \in M$ $t/w = X \xrightarrow{-} RX$.
Observation: For any $X \in M$, by (4) we can always construct
 $0 \xrightarrow{-} X \xrightarrow{-} X$ and $X \xrightarrow{-} 1$
 $n \xrightarrow{-} \cdot Can$ extend $Q \notin R$ to morphisms, e.g. $\int_{X} QX \xrightarrow{-} X \xrightarrow{-} Y$
 $\cdot Any X \in M$ is connected by a zigzag of weak eq. to
an object that is both fibrant $\frac{1}{2}$ colibrant : $V \xrightarrow{-} RX$

In a model category, the notion of homotopy makes sense.
Def: Let X, Y \in M.
A cylinder object for X is a factorisation
$$X \perp X \xrightarrow{(id,id)} X$$

e.g. $X \times I$ in Top, $X \times A'$ in SSE.
A path object for Y is a factorisation $Y \xrightarrow{(id,id)} Y \times Y$.
Def: Let $f_{i,g}: X \to Y$ in M .
A left homotopy from f to g is (a choice of $C_{ij}(X)$ t/w)
a map $C_{ij}(X) \xrightarrow{H} Y$ s.t. $H_{io} = f \notin H_{i_1} = g$.
A right homotopy from f to g is (a choice of Path (Y) t/w)
a map $X \xrightarrow{K}$ Path (Y) s.t. $p_0K = f \notin p_iK = g$, $f \xrightarrow{K} g$
Observation: $f \xrightarrow{K} g \rightarrow f \xrightarrow{K} h$

$$\frac{ODSERVATION}{f \sim g} \Rightarrow hf \sim hg \qquad for \quad \cdot \stackrel{k}{\longrightarrow} \cdot \stackrel{f}{\xrightarrow{g}} \cdot \stackrel{h}{\longrightarrow} \cdot$$

What's the right notion of morphism between model categories?
If we just want
$$F:M \rightarrow N$$
 to induce $(to(M) \rightarrow Ho(N)$
then F simply needs to preserve weak eq., but such F can mess up computations.
Here's a hint.
Here's a hint.
 $F:K \rightarrow V$ in D .
 $F:K \rightarrow Y$ in D . Then there is a bijection
 $f:X \rightarrow Y$ in D . Then there is a bijection
 $f:X \rightarrow Y$ in D . Then there is a bijection
 $f:X \rightarrow Y$ in D . Then there is a bijection
 $f:X \rightarrow Y$ in D . Then there is a bijection
 $f:X \rightarrow Y$ in D . Then there is a bijection
 $f:X \rightarrow Y$ in D .
 $F:K \rightarrow$

Def: An adjunction between model categories
$$\mathcal{M} \xrightarrow{\mathsf{F}} \mathcal{N}$$
 is
a Quiller adjunction if
G preserves $\mathfrak{O} \cdot \mathsf{F}$ preserves cofibrations; and
in fib.
 $\cdot \mathsf{G}$ preserves cofibrations.
Freevers \mathfrak{O} F is left Quiller / G is right Quillen
two cof.
Foct: A Quillen adjunction $\mathcal{M} \xrightarrow{\mathsf{F}} \mathcal{N}$ induces an adjunction $\mathsf{Ho}(\mathcal{M}) \xrightarrow{\mathsf{F}} \mathsf{Ho}(\mathcal{N})$
 G G is an example of a Quillen equivalence
 G : $\mathsf{I} \times \mathsf{G} \times \mathsf{G} \times \mathsf{G}$ is a Quillen adjunction $\mathsf{F} + \mathsf{G}$ s.t.
 $\mathsf{f} : \mathsf{X} \to \mathsf{G} \times \mathsf{G} \times \mathsf{G} \times \mathsf{G}$
 $\mathsf{I} = \mathsf{F} \times \mathsf{G} \times \mathsf{G}$

.