Lecture 2: Spaces as Kan complexes

By "spaces", we mean Kan complexes up to (weak) homotopy equivalence.

Fact: If we are given $f: X \to Y$ between CW-cx s.t. Tin(f) invertible for all n then we know that f is a homotopy equivalence, but we CANNOT deduce the existence of such f from isomorphisms Tin(X) = Tin(Y).

To specify a space,
we have to know how
holes of different
dimensions fit together.

Recall: is the cetegor of totally ordered sets [n] = {0<1<...<n} and order-preserving maps. The category of simplicial sets is set = [Set] The representable (-, [n]) is denoted by s. Notation / terminology: For XESSet and n20, we write Xn = X ([n]). An element x & Xn is called an n-simplex in X. By Youeda, xeXn and And X. For $\alpha: [m] \rightarrow [n]$, we denote the image of $x \in X_n$ under the action of α by $x \cdot \alpha = (X(\alpha))(x)$

Consistent with: $\triangle^m \xrightarrow{\alpha} \triangle^n \xrightarrow{\times} X$ we also have $(\lambda \cdot \alpha) \cdot \beta = \lambda \cdot (\alpha \beta)$

Det: A morphism in A is called degenerate if it is NOT injective.

The simplices that appear in the pictures are precisely the non-degenerate ones:
= injective

e.g. [1] \rightarrow [2] corresponds to the edge $\frac{1}{2}$

[2]
$$\rightarrow$$
 [3]

Corresponds to the face

2

2

2

3

Def: Let $X \in S$ et. We say $X \in X_n$ is degenerate if there exist $\cdot k < n$ $\cdot y \in X_k$ $\cdot \alpha : [n] \rightarrow [k]$ lower dimension

s.f. x = y.a.

This is consistent with the previous definition:

 $\beta: [n] \to [m]$ is not injective $\iff \beta$ factors as $[n] \to [k] \to [m]$ for some k < n $\iff \beta$ is degenerate as an n-simplex in \triangle^m .

Eilenberg - Zilber Lemma:

Any n-simplex x in $X \in \underline{SSet}$ can be written uniquely as $x = y \cdot \alpha$ where $\alpha : [n] \to [k]$ is surjective and $y \in X_k$ is non-degenerate.

The non-degenerate simplices are the ones that "really matter".

To	construct $\pi_n(X,x)$	of	Ke Top, we	had to talk about	S ⁿ⁻¹ .
	corresponding object		•	$f: D^n \to X$ s.t. $f _{S^{n-1}}$	

Def: The boundary $\partial \Delta^n$ of Δ^n is the simplicial subset given by $(\partial \Delta^n)_m = \{\alpha : [m] \rightarrow [n] : n \land \alpha \in \mathbb{N} \}$

So the non-deg. simplices in dan are precisely the non-identity injective maps into [n].

e.g.	Δ°	△'	△2^2	<u>*</u> 3
	O	0> [0 ////// 2	3
		J∆'	<u>ک</u>	∂ <u>~</u> ³
	(empty)	0 [0 2	2

Def: Let $n \ge 1$ and $0 \le i \le n$. By the i-th face of X^n , we mean the map $[n-i] \xrightarrow{\delta i} [n]$ $s \mapsto \begin{cases} s & \text{if } s < i \\ s \mapsto s \end{cases}$ $s \mapsto \begin{cases} s & \text{if } s < i \\ s \mapsto s \end{cases}$ $s \mapsto \begin{cases} s & \text{if } s < i \\ s \mapsto s \end{cases}$ $s \mapsto \begin{cases} s & \text{if } s < i \\ s \mapsto s \mapsto s \end{cases}$ regarded as an (n-1)-simplex in Δ^n .

e.g.
$$\frac{\partial \Delta^2}{\partial z} = \frac{\partial \Delta^3}{\partial z} = \frac{\partial \Delta^3$$

In general, the boundary $\partial \Delta^n$ is the union of the faces \mathcal{D}_i . More precisely, $\alpha: [m] \to [n]$ is in $\partial \Delta^n$ iff it factors through $[n-1] \to [n]$ for some i.

Recall that, in Top, we were only interested in CW-cx. — built by attaching cells
Recall that, in Top, we were only interested in CW-cx.—built by attaching cells In <u>sSet</u> , everything is CW-complex-like in the following sense.
Det: Let X & sSet and d Z - 1. Then the d-skeleton sty(X) of X is
Def: Let $X \in S$ and $d \ge -1$. Then the d -skeleton S to X is the simplicial subset given by S implices coming from dimension $\le d$.
(skd(X)) = {xeXn]k = d]yeXk][n] = [k] s.t. x=y-x}
Convention: $s \not\models_{-1} (X) = \emptyset$
e.g. $\partial \Delta^n = \operatorname{sk}_{n-1}(\Delta^n)$ (empty)
Fact: Any $X \in SSet$ can be written as $X = colim(sk_{-1}(X) \hookrightarrow sk_{0}(X) \hookrightarrow sk_{1}(X) \hookrightarrow sk_{2}(X) \hookrightarrow)$ Moreover, for each $d \ge 0$, the following square is a pushout:
Moreover, for each d ≥ 0, the following square is a pushout:
coproduct over non-deg. d-simplices () () (X) (Y)

On the other hand, the homotopy groups are harder to define for simplicial sets
than for topological spaces.
Def: Let fig: X -> Y in sSet. Then a homotopy H: fry is a map H: X x \(\sigma \)
Def: Let $f,g: X \to Y$ in sSet. Then a homotopy $H: f \circ g$ is a map $H: X \times \Delta' \to Y$ s.t. $H(-,0) = f \notin H(-,1) = g$. $X \cong X \times \Delta' \xrightarrow{id \times \overline{O}_1} X \times \Delta' \xrightarrow{H} Y$
Given XESSet & XEXO, we want to define
$T_1(X,x) = \{f \in X, f \cdot J_0 = f \cdot J_1 = x\} / \text{endpoint - preserving homotopy}$
But how do we concatenate two loops?
But how do we concatenate two loops? If there is a 2-simplex in X like a Millim x then it seems reasonable to set $g \neq f = h$, but we don't always have such a 2-simplex.

Def: Le	f nel and oeken.	
Th	e k-th horn 1k is	the union of i-th faces of D for itk
	re precisely,	
	$\binom{n}{k}_{m} = \sqrt{\alpha : [m] \rightarrow [n]}$	n in $A \mid \exists i \in [n]$ s.t. $k \neq i$ and $i \notin in(\alpha)$
e.g.	^²	13 × 12 × 12 × 12 × 12 × 12 × 12 × 12 ×
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
The geor	netric realisation [-]:	sSet - Top sends the inclusion 1/4 - In
	inclusion of a hemisphere	· · · · · · · · · · · · · · · · · · ·
e.g		

Det: X & sSet is a Kan complex if any horn in X can be filled to a simplex.
I.E. Du VK
$\frac{1}{2} = \frac{1}{2} = \frac{1}$
Fact: For any A & Top, Sing (A) is a Kan complex because:
Topologically, we may interpret the horn-filling condition for arbitrary $X \in \underline{SSet}$ as: given n many $(n-1)$ -simplices in X forming an $(n-1)$ -disk,
we can find a single (n-1)-simplex representing a disk with the same boundary
together with a boundary-preserving homotopy connecting the two disks.
i.e. we can paste simplices

Fact: For a Kan complex X, x & Xo and n 21, [n-1] ! [0] $\pi_n(X,x) = \{ f \in X_n \mid f \cdot \delta_i = x \cdot | \text{ for each } 0 \leq i \leq n \} / \text{bdy-preserving homotopy}$ is a group. Moreover, $\pi_n(X,x) \subseteq \pi_n(|X|,x)$. Def: A map f: X -> Y in sSet is a weak homotopy equivalence if If 1: |X | -> |Y | is a weak homotopy equivalence in Top; equivalently, if • finduces a bijection between connected components; and coequaliser of $X_1 \Rightarrow X_0$.
• $T_n(|f|) : T_n(|X|,x) \rightarrow T_n(|Y|,f(x))$ is an isomorphism for all $n \ge 1$ & all $x \in X_0$. Eact: Any homotopy equivalence is a weak homotopy equivalence. Whitehead's theorem: Any weak homotopy equivalence between Kan complexes is a homotopy equivalence. Next lecture: The adjunction Top T soft exhibits the homotopy theory of CW-complexes & that of Kan complexes to be equivalent.

Extra

If we only care about non-degenerate simplices, why does to have to contain all order-preserving functions rather than just injective ones?

Consider the product $\triangle' \times \triangle'$ (note $(X \times Y)_n = X_n \times Y_n$). Its non-deg. Simplices are: (0,0) (01,00) (1,0)

(0,0) (01,01) (0,1) (1,1) If we replace by the injective-only version, the corresponding product looks like:

So we need degenerate simplices to get the "correct" product.

For a Kan complex $X \notin x \in X_0$, we define the multiplication in $\pi_i(X,x)$ by filling 1; given $f,g:x\to\infty$, 1? $\frac{1}{\Delta^2} = \frac{1}{2} \frac{1}{\alpha} \frac{1}{\alpha}$ Observe that, if $X \in X_2$ then [h] = [k] under the action of $[2] \to [1]$ Since we we can complete it to a homotopy: Using this fact & filler for 1, we can prove the uniqueness of composite: given fag & fill fag.

Exercise: Prove that The (X,x) is indeed a group.