

A CW-complex is a topological space built from Simple building blocks.
Def:
$$D^{\bullet} = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid x_1^{\bullet} + ... + x_n^{\perp} = 1\}$$
 disk
 $S^{n+1} = \{(x_1, ..., x_n) \in \mathbb{R}^n \mid x_1^{\bullet} + ... + x_n^{\perp} = 1\}$ sphere
e.g. $S^{-1} = p \in D^{\circ}$ $S^{\circ} \subset D'$ $S' \subset D^{2}$

Def: A CW-complex is a topological space X that can be written as
X = coline $(X' \rightarrow X^{\circ} \rightarrow X' \rightarrow ...)$
in Eq. where $X^{-1} = p$ and each $X^{n+1} \rightarrow X^{n-1}$ is $1 p \circ ... 1$ n-cells along
a poshemit of a coppodact of $S^{n-1} \rightarrow D^{n-1}$: $1 D^{\circ} \rightarrow X^{n-1}$ boundary

continuous
spaces and
spaces and
spaces and
 $S^{n} = S^{n-1} \rightarrow X^{n-1}$ $X^{n-1} \rightarrow X^{n-1}$ is $S^{n-1} \rightarrow X^{n-1}$ $X^{n-1} \rightarrow X^{n-1} \rightarrow X^{n-1}$ $X^{n-1} \rightarrow X^{n-1} \rightarrow X^{n-1}$ $X^{n-1} \rightarrow X^{n-1} \rightarrow X^{n-1} \rightarrow X^{n-1}$ $X^{n-1} \rightarrow X^{n-1} \rightarrow X^{n-1}$

Def: Let
$$f,g: X \rightarrow Y$$
 in Top.
A homotopy $H: f \sim g$ is a cts map
 $H: X \times I \rightarrow Y$ [o,1] with usual topology
s.t. $H(x, 0) = f(x), H(x, 1) = g(x).$

~

Def:
$$f: X \to Y$$
 in Top is a homotopy equivalence if there exist
 $g: Y \longrightarrow X$ in Top 4 homotopies $H: gf \sim id_X$, $K: fg \sim id_Y$.

Def: Let X e top and x e X.
The fundamental group of the pair
$$(X, x)$$
 is
 $T_{*}(X, x) = \{ \text{toops in } X \text{ based at } x \}$ (boop homotopy
 $f: 1 \rightarrow X$ with
 $f(o) = f(t) = x$
 $H(-, t) = s$ doop at x for all t.
Fact: $T_{*}(X, x)$ is a group
 $[3] * [f] = [3 * f]$ where $(3 * f)(s) = \begin{cases} f(2s) & \text{if } 0 \leq s \leq k_2, \\ \vartheta(2s-1) & \text{if } V_2 \leq s \leq l. \end{cases}$
equivalence class
cortaining g.

The counts the number of "I-dimensional" holes, so
$$T_{n}(S) \ge \mathbb{Z}$$
 but
 $T_{1}(S^{2})$ is trivial e.g. suppressing the basepoint because
any two choices would yield isomorphic gamps.
To count the higher -dimensional holes, we need higher homotopy groups.
Def: Lef $X \in Top$, $x \in X$ and $n \ge 1$.
The n-th homotopy group of (X, x) is
 $Ta(X, x) = \begin{cases} f: D^{n} \to X \text{ in } Top \text{ s.t.} \\ (f|_{S^{n-1}} \text{ is constant of } x) \end{cases}$ ("boundary preserving" homotopy
vestriction
Fact: $Ta(X, x)$ is a group (abelian for $n \ge 2$). We always have $Ta(S^{n}) \le \mathbb{Z}$.

Facts: The is a function Top
$$x \rightarrow Gp$$
.
category of (X, z) 's category of groups
 \cdot If \exists homotopy fing then $Tn(f) = Tn(g)$
 \longrightarrow Every homotopy equivalence is a weak homotopy equivalence
 $Def: f: X \rightarrow Y$ in Top is a weak homotopy equivalence if
 \cdot f induces a bijection between path components;
 $\exists path x \sim x' in X \Leftrightarrow \exists path f(x) \sim f(x') in Y$
 $A \lor O$
 $\forall y \in Y \exists x \in X \exists path f(x) \sim y$.
 $\cdot Tn(f): Tn(X, x) \rightarrow Tn(Y, f(x))$ is an isomorphism
for all $x \in X$ and for all $n \ge 1$.
 if glavid then $Tn(g) Tn(f) = Tn(gf) = Tn(id) = id$
Whitehead's theorem:
Every weak homotopy equivalence between CW -complexes
is a homotopy equivalence.

Today: By "spaces", we mean CW-complexes up to (weak) httpy eq.
But really the "space" corresponding to a CW-cx & just needs to remember
the maps
$$D^{n} \rightarrow X$$
 ($4 \ S^{n-1} \rightarrow X$) and how they fit together.
what we use to construct T_{n} .
These data can be packaged into a simplicial set $Sing(X)$.
Singlar complex
Def: The category (A has
(obj) ordered sets [n] = $\{0 < 1 < ... < n\}$ for $n \ge 0$; and
(nor) order-preserving functions between them.
 $i \le j \Rightarrow f(i) \le f(j)$

The category of simplicial sets is the functor category

$$sSel = [\Delta^{op}, Set]$$

linear extension of action on vertices

$$Fact$$
: Sing has a left adjoint $[-]$: $sSet \longrightarrow Top$ which sendsthe representablegeometric $\Delta^n = sSet(-, InJ)$ realisationto the topological n-simplex $[\Delta^n]$.Sing(X) indeed remembers all $D^n \longrightarrow X \notin S^{n-1} \longrightarrow X$ since $\Delta^n (= D^n)$ and $[\partial\Delta^n] \cong S^{n-1}$ in Top :

we'll see
$$\partial \Delta^{n}$$

in next lecture.
 $D^{n} \rightarrow \chi \iff |\Delta^{n}| \rightarrow \chi \iff \Delta^{n} \rightarrow Sing(\chi)$
in next lecture.
 $in \ \overline{lop}$
 $in \ \underline{sSet}$

In general, any functor
$$F: \bigtriangleup \rightarrow C$$
 induces an adjunction
 $\underbrace{L}_{SSet} \xrightarrow{L}_{R} C$ where $(RX)(INJ) = C(FINJ, X)$ and L is an (essentially unique)
 $\underbrace{L}_{R} C$ cocontinuous extension of F .
 $\underbrace{Look}_{N} up$ "the cocompletion". This actually non-
with any small category in place of \bigtriangleup .

So
$$F$$
 is specifying what we mean by simplices in C' , $\notin (RX)(In7)$ is the set of copies of n-simplex we can find inside X.

For example, we can obtain
$$F: \triangle \rightarrow Cat$$
 by regarding each $M = \{0 < 1 < ... < n\}$
as a category $(i \le i) \iff there is a unique morphism $i \rightarrow j$)
The right adjoint $N: Cat \rightarrow sSet$ of the induced adjunction is called
the nerve functor.
An element of $(NC)(InI)$ is a commutative $n-simplex$ in C (which amounts to
a composable sequence of n morphisms).
Now we have seen simplicial sets coming from topological spaces & Categories.
The notion of ϖ -category (or more accurately quasi-category) we'll eventually get to
subsumes both of these.$