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(Weak) equivalences between algebraic weak ω-categories

Globular approach

0-cells 1-cells 2-cells · · ·

· · ·

Our weak ω-categories will be globular sets

equipped with extra structure
encoded by a monad Twk.

Question

How should we define Twk?

We should have {strict ω-cats} ⊂ {weak ω-cats}, or equivalently a monad map
α : Twk → Tst.
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(Weak) equivalences between algebraic weak ω-categories

Pasting Theorem

The monad map α : Twk → Tst encodes a sort of Pasting Theorem.

Let’s recall:

Pasting Theorem for 2-categories

A pasting diagram such as

f1

f2

α

g1

g2

g3

β1

β2

h

in a strict 2-category

gives rise to a unique 2-cell hg1f1 → hg3f2.

In a weak 2-category (bicategory), we similarly get a unique 2-cell, but only
after specifying what we mean by “hg1f1” and “hg3f2”.
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(Weak) equivalences between algebraic weak ω-categories

Tst1

The terminal globular set 1 has:

a unique 0-cell x0,

a unique 1-cell x1 : x0 → x0,

a unique 2-cell x2 : x1 → x1, . . .

In 1, everything is composable along everything. So

(Tst1)n = {n-dimensional (globular) pasting schemes}.

e.g.

(Tst1)1 = { , , , · · · }

(Tst1)2 contains cells like .
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(Weak) equivalences between algebraic weak ω-categories

Twk1

In the weak case, e.g. (→→)→ and →(→→) should be distinct cells in Twk1.

(Tst1)n = {n-dimensional pasting schemes}

(Twk1)n = {n-dimensional pasting instructions}

Existence part of Pasting Theorem

We ask that each commutative square

∂Gn Twk1

Gn Tst1

α1

admit a chosen diagonal lift.

The data of such lifts is called a contraction.
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(Weak) equivalences between algebraic weak ω-categories

TwkX

For arbitrary X, we want a cell in TwkX to be

a pair consisting of:

a pasting diagram in X, and

a pasting instruction.

Cartesian over Tst

For each globular set X, we ask

TwkX Twk1

TstX Tst1

αX α1

to be a pullback.

Definition (Leinster)

Twk is the initial cartesian monad over Tst with contraction.
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(Weak) equivalences between algebraic weak ω-categories

Identity and binary composition

Let (X,TwkX
ξ−→ X) be a weak ω-category and x ∈ Xn−1.

We can define 1x ∈ Xn by

∂Gn TwkX X

Gn TstX

(ηwk(x),ηwk(x))

αX (inherits lifts from α1)

ξ

identity on ηst(x)

Similarly, given n-cells x
f−→ y

g−→ z, we can define gf ∈ Xn using

∂Gn TwkX X

Gn TstX

(ηwk(x),ηwk(z))

αX

ξ

ηst(g)ηst(f)

But we can’t lift equalities between cells; more precisely, the resulting lifts will
only be equivalences.
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(Weak) equivalences between algebraic weak ω-categories

Coinductive equivalences

Definition

An n-cell f : x → y (with n ≥ 1) is an equivalence if

there exist:

an n-cell g : y → x,

an equivalence (n+ 1)-cell gf → 1x, and

an equivalence (n+ 1)-cell fg → 1y.

To exhibit a 1-cell f : x → y as an equivalence, we must provide:

a 1-cell g : y → x,

an equivalence 2-cell h : gf → 1x,

a 2-cell h′ : 1x → gf ,
an equivalence 3-cell h′h → 1gf ,
an equivalence 3-cell hh′ → 11x ,

an equivalence 2-cell k : fg → 1y,

a 2-cell k′ : 1y → fg,
an equivalence 3-cell k′k → 1fg ,
an equivalence 3-cell kk′ → 11y ,

“f is an equivalence” means “f admits such an infinite hierarchy of witnesses”
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(Weak) equivalences between algebraic weak ω-categories

Uniqueness and applications

Uniqueness part of Pasting Theorem

Let (X,TwkX
ξ−→ X) be a weak ω-category. If f//g in (TwkX)n and

αX(f) = αX(g) then there is an equivalence (n+ 1)-cell ξ(f) → ξ(g) in X.

Instances of this result yield:

h(gf) ∼ (hg)f, 1f ∼ f ∼ f1 etc.

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Proof

Requires more work than one might expect

because one has to deal with both
“formal composites” and “actual composites.”

Using these theorems, we can treat weak ω-categories just like strict ones.

..?
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Algebraic weak ω-categories
Equivalences in an algebraic weak ω-category

(Weak) equivalences between algebraic weak ω-categories

Weak equivalences

A weak equivalence F : X → Y is a Twk-algebra morphism that is

essentially surjective on objects, and

fully faithful.

More explicitly,

[∀y ∈ Y0] [∃x ∈ X0] Fx ∼ y, and

[∀x, x′ ∈ X0] the induced map X(x, x′) → Y (Fx, Fx′) is
a weak equivalence.

Definition

A weak equivalence F : X → Y is a Twk-algebra morphism such that

F is eso (in the above sense), and

induced maps between all iterated homs are eso.

Theorem

The class of weak equivalences enjoys the 2-out-of-3 property.
That is, if any two of F,G and GF are weak equivalences then so is the third.
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Equivalences in an algebraic weak ω-category

(Weak) equivalences between algebraic weak ω-categories

Case 1: F and G are weak equivalences

X Y Z
F

GF

G

[GF is eso]
Let z ∈ Z0.
G is eso =⇒ ∃y ∈ Y0 s.t. Gy ∼ z.
F is eso =⇒ ∃x ∈ X0 s.t. Fx ∼ y.
So we have GFx ∼ Gy ∼ z, which compose to GFx ∼ z.

[induced maps are eso]
Let x, x′ ∈ X0. Then we have

X(x, x′) Y (Fx, Fx′) Z(GFx,GFx′)
Fx,x′

(GF )x,x′

GFx,Fx′

and we can repeat the argument above.
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(Weak) equivalences between algebraic weak ω-categories

Case 2: G and GF are weak equivalences

X Y Z
F

GF

G

[F is eso]
Equally easy.∗

[induced maps are eso]
Let x, x′ ∈ X0 and consider

X(x, x′) Y (Fx, Fx′) Z(GFx,GFx′)
Fx,x′

(GF )x,x′

GFx,Fx′
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Fx,x′

(GF )x,x′

GFx,Fx′
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Algebraic weak ω-categories
Equivalences in an algebraic weak ω-category

(Weak) equivalences between algebraic weak ω-categories

Whiskering

We want:

Lemma

For an equivalence 1-cell u : y → z in a weak ω-category X, the whiskering map

u ∗ (−) : X(x, y) → X(x, z)

is a weak equivalence

(except that it’s not strictly functorial)

.

The proof of the strict case (Lafont-Métayer-Worytkiewicz) implicitly relies on:

Obvious fact in strict case

For x, y in a strict ω-category X, the whiskering map

1y ∗ (−) : X(x, y) → X(x, y)

is (the identity and so in particular) a weak equivalence.
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Equivalences in an algebraic weak ω-category

(Weak) equivalences between algebraic weak ω-categories

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

1y ∗ (−) : X(x, y) → X(x, y)

is a weak equivalence (except that it’s not strictly functorial).

Constructing the pads is relatively easy, but proving

1y ∗ (padded cell) ∼ (original cell)

is tricky because of “formal” vs “actual composites.” We actually prove

padded
(
1y ∗ ()

)
∼ padded (original cell)

= padded cell

and argue

1y ∗ (−) is essentially injective =⇒ u ∗ (−) is essentially injective

=⇒ 1y ∗ (−) is essentially surjective =⇒

u ∗ (−) is essentially surjective.
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(Weak) equivalences between algebraic weak ω-categories

Thank you!

Papers (Fujii-Hoshino-M.)

Weakly invertible cells in a weak ω-category, to appear in Higher
Structures, arXiv:2303.14907

ω-weak equivalences between weak ω-categories, will put up on arXiv soon

more to come!
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