Equivalences in and between algebraic weak ω-categories j/w Soichiro Fujii ${ }^{1}$ and Keisuke Hoshino

Yuki Maehara ${ }^{2}$

Kyoto University
(∞, n)-Categories and their applications

[^0](1) Algebraic weak ω-categories
(2) Equivalences in an algebraic weak ω-category
(3) Weak) equivalences between algebraic weak ω-categories
(1) Algebraic weak ω-categories
(2) Equivalences in an algebraic weak ω-category

3 (Weak) equivalences between algebraic weak ω-categories

Globular approach

Our weak ω-categories will be globular sets

Globular approach

0 -cells	1-cells	2 -cells	
\cdot	$\cdot \longrightarrow \cdot$	\cdots	\cdots

Our weak ω-categories will be globular sets equipped with extra structure encoded by a monad $T_{\mathrm{w} k}$.

Globular approach

0 -cells	1-cells	2 -cells	
\cdot	$\cdot \longrightarrow \cdot$	\cdots	\cdots

Our weak ω-categories will be globular sets equipped with extra structure encoded by a monad $T_{\mathrm{w} k}$.

Question

How should we define $T_{\mathrm{w} k}$?

Globular approach

0-cells	1-cells	2 2-cells	\cdots
\cdot	$\cdot \longrightarrow \cdot \overbrace{\square}$	\cdots	

Our weak ω-categories will be globular sets equipped with extra structure encoded by a monad $T_{\mathrm{w} k}$.

Question

How should we define $T_{\mathrm{w} k}$?
We should have $\{$ strict ω-cats $\} \subset\{$ weak ω-cats $\}$,

Globular approach

0 -cells	1-cells	2 -cells	\cdots
\cdot	$\cdot \longrightarrow \cdot$	$\bullet \overbrace{r}$	\cdots

Our weak ω-categories will be globular sets equipped with extra structure encoded by a monad $T_{\mathrm{w} k}$.

Question

How should we define $T_{\mathrm{w} k}$?
We should have $\{$ strict ω-cats $\} \subset\{$ weak ω-cats $\}$, or equivalently a monad map $\alpha: T_{\mathrm{w} k} \rightarrow T_{\mathrm{s} t}$.

Pasting Theorem

The monad map $\alpha: T_{\mathrm{w} k} \rightarrow T_{\mathrm{s} t}$ encodes a sort of Pasting Theorem.

Pasting Theorem

The monad map $\alpha: T_{\mathrm{w} k} \rightarrow T_{\mathrm{s} t}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

Pasting Theorem

The monad map $\alpha: T_{\mathrm{w} k} \rightarrow T_{\mathrm{s} t}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category

Pasting Theorem

The monad map $\alpha: T_{\mathrm{w} k} \rightarrow T_{\mathrm{s} t}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category gives rise to a unique 2-cell $h g_{1} f_{1} \rightarrow h g_{3} f_{2}$.

Pasting Theorem

The monad map $\alpha: T_{\mathrm{w} k} \rightarrow T_{\mathrm{s} t}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category gives rise to a unique 2 -cell $h g_{1} f_{1} \rightarrow h g_{3} f_{2}$.
In a weak 2-category (bicategory), we similarly get a unique 2-cell, but

Pasting Theorem

The monad map $\alpha: T_{\mathrm{w} k} \rightarrow T_{\mathrm{s} t}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category gives rise to a unique 2 -cell $h g_{1} f_{1} \rightarrow h g_{3} f_{2}$.
In a weak 2-category (bicategory), we similarly get a unique 2-cell, but

$$
\text { " } h g_{1} f_{1} " \quad " h g_{3} f_{2} " .
$$

Pasting Theorem

The monad map $\alpha: T_{\mathrm{w} k} \rightarrow T_{\mathrm{s} t}$ encodes a sort of Pasting Theorem. Let's recall:

Pasting Theorem for 2-categories

A pasting diagram such as

in a strict 2-category gives rise to a unique 2 -cell $h g_{1} f_{1} \rightarrow h g_{3} f_{2}$.
In a weak 2-category (bicategory), we similarly get a unique 2-cell, but only after specifying what we mean by " $h g_{1} f_{1}$ " and " $h g_{3} f_{2}$ ".

$T_{\mathrm{s} t} 1$

The terminal globular set 1 has:

$T_{\mathrm{s} t} 1$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},

$T_{\mathrm{s} t} 1$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,

$T_{\mathrm{st}} 1$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

$T_{\mathrm{st}} 1$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything.

$T_{\mathrm{st}} 1$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T_{\mathrm{st}} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

$T_{\mathrm{st}} 1$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T_{\mathrm{st}} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

e.g.

$T_{\mathrm{st}} 1$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T_{\mathrm{st}} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

e.g.

- $\left(T_{\mathrm{s} t} 1\right)_{1}=\{\bullet, \quad \bullet \bullet \bullet, \quad \longrightarrow \bullet \longrightarrow \bullet, \quad \cdots\}$
- $\left(T_{\mathrm{s} t} 1\right)_{2}$ contains cells like

$T_{\mathrm{w} k} 1$

$$
\left(T_{\mathrm{s} t} 1\right)_{n}=\{n \text {-dimensional pasting schemes }\}
$$

$T_{\mathrm{w} k} 1$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T_{\mathrm{w} k} 1$.

$$
\left(T_{\mathrm{s} t} 1\right)_{n}=\{n \text {-dimensional pasting schemes }\}
$$

$T_{\mathrm{w} k} 1$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T_{\mathrm{w} k} 1$.

$$
\begin{aligned}
\left(T_{\mathrm{st}} 1\right)_{n} & =\{n \text {-dimensional pasting schemes }\} \\
\left(T_{\mathrm{w} k} 1\right)_{n} & =\{n \text {-dimensional pasting instructions }\}
\end{aligned}
$$

$T_{\mathrm{w} k} 1$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T_{\mathrm{w} k} 1$.

$$
\begin{aligned}
\left(T_{\mathrm{st}} 1\right)_{n} & =\{n \text {-dimensional pasting schemes }\} \\
\left(T_{\mathrm{w} k} 1\right)_{n} & =\{n \text {-dimensional pasting instructions }\}
\end{aligned}
$$

Existence part of Pasting Theorem

We ask that each commutative square

admit a chosen diagonal lift.

$T_{\mathrm{w} k} 1$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T_{\mathrm{w} k} 1$.

$$
\begin{aligned}
\left(T_{\mathrm{st}} 1\right)_{n} & =\{n \text {-dimensional pasting schemes }\} \\
\left(T_{\mathrm{w} k} 1\right)_{n} & =\{n \text {-dimensional pasting instructions }\}
\end{aligned}
$$

Existence part of Pasting Theorem

We ask that each commutative square

admit a chosen diagonal lift.
The data of such lifts is called a contraction.

$T_{\mathrm{wk}} X$

$T_{\mathrm{w} k} X$

For arbitrary X, we want a cell in $T_{\mathrm{w} k} X$ to be

$T_{\mathrm{w} k} X$

For arbitrary X, we want a cell in $T_{\mathrm{w} k} X$ to be a pair consisting of:

- a pasting diagram in X, and
- a pasting instruction.

$T_{\mathrm{wk}} X$

For arbitrary X, we want a cell in $T_{\mathrm{w} k} X$ to be a pair consisting of:

- a pasting diagram in X, and
- a pasting instruction.

Cartesian over $T_{\text {st }}$

For each globular set X, we ask

to be a pullback.

$T_{\mathrm{wk}} X$

For arbitrary X, we want a cell in $T_{\mathrm{w} k} X$ to be a pair consisting of:

- a pasting diagram in X, and
- a pasting instruction.

Cartesian over T_{st}

For each globular set X, we ask

$$
\begin{array}{cc}
T_{\mathrm{w} k} X & T_{\mathrm{w} k} 1 \\
\alpha_{X} \downarrow \\
\downarrow & \downarrow^{\alpha_{1}} \\
T_{\mathrm{s} t} X & \longrightarrow T_{\mathrm{s} t} 1
\end{array}
$$

to be a pullback.

Definition (Leinster)

$T_{\mathrm{w} k}$ is the initial cartesian monad over $T_{\mathrm{s} t}$ with contraction.

Identity and binary composition

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category and $x \in X_{n-1}$.
We can define $1_{x} \in X_{n}$ by

Identity and binary composition

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category and $x \in X_{n-1}$.
We can define $1_{x} \in X_{n}$ by

Identity and binary composition

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category and $x \in X_{n-1}$.
We can define $1_{x} \in X_{n}$ by

Similarly, given n-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $g f \in X_{n}$ using

$$
\partial G^{n} \xrightarrow{\left(\eta_{\mathrm{w} k}(x), \eta_{\mathrm{w} k}(z)\right)} T_{\mathrm{w} k} X \xrightarrow{\xi} X
$$

$$
{\underset{G}{n}}_{\downarrow_{\eta_{\mathrm{s} t}(g) \eta_{\mathrm{s} t}(f)}}, \ldots, \ldots{ }_{\mathrm{s} t} \alpha_{X}
$$

Identity and binary composition

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category and $x \in X_{n-1}$.
We can define $1_{x} \in X_{n}$ by

Similarly, given n-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $g f \in X_{n}$ using

But we can't lift equalities between cells;

Identity and binary composition

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category and $x \in X_{n-1}$.
We can define $1_{x} \in X_{n}$ by

Similarly, given n-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $g f \in X_{n}$ using

$$
\begin{aligned}
& \partial G^{n} \xrightarrow{\left(\eta_{\mathrm{w} k}(x), \eta_{\mathrm{w} k}(z)\right)} T_{\mathrm{w} k} X \xrightarrow{\xi} X \\
& \underset{G^{n}}{\downarrow} \underset{\eta_{\mathrm{st}(\mathrm{~g}) \eta_{\mathrm{s} t}(f)}}{ } T_{\mathrm{s} t} X
\end{aligned}
$$

But we can't lift equalities between cells; more precisely, the resulting lifts will only be equivalences.
(1) Algebraic weak ω-categories
(2) Equivalences in an algebraic weak ω-category

3 (Weak) equivalences between algebraic weak ω-categories

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide:

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide:

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide:

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$,
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$,
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide:

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$,
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$,
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,
- a 2-cell $k^{\prime}: 1_{y} \rightarrow f g$,
- an equivalence 3 -cell $k^{\prime} k \rightarrow 1_{f g}$,
- an equivalence 3 -cell $k k^{\prime} \rightarrow 1_{1_{y}}$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide:

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$, a 3 -cell $1_{g f} \rightarrow h^{\prime} h$, equivalence 4-cells...
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$, a 3 -cell $1_{1_{x}} \rightarrow h h^{\prime}$, equivalence 4 -cells...
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,
- a 2-cell $k^{\prime}: 1_{y} \rightarrow f g$,
- an equivalence 3 -cell $k^{\prime} k \rightarrow 1_{f g}$, a 3 -cell $1_{f g} \rightarrow k^{\prime} k$, equivalence 4 -cells...
- an equivalence 3 -cell $k k^{\prime} \rightarrow 1_{1_{y}}$, a 3 -cell $1_{1_{y}} \rightarrow k k^{\prime}$, equivalence 4-cells...

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide:

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$, a 3 -cell $1_{g f} \rightarrow h^{\prime} h$, equivalence 4-cells...
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$, a 3 -cell $1_{1_{x}} \rightarrow h h^{\prime}$, equivalence 4 -cells...
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,
- a 2-cell $k^{\prime}: 1_{y} \rightarrow f g$,
- an equivalence 3 -cell $k^{\prime} k \rightarrow 1_{f g}$, a 3 -cell $1_{f g} \rightarrow k^{\prime} k$, equivalence 4 -cells...
- an equivalence 3 -cell $k k^{\prime} \rightarrow 1_{1_{y}}$, a 3 -cell $1_{1_{y}} \rightarrow k k^{\prime}$, equivalence 4-cells...
" f is an equivalence" means " f admits such an infinite hierarchy of witnesses"

Uniqueness and applications

Uniqueness part of Pasting Theorem

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T_{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Uniqueness and applications

Uniqueness part of Pasting Theorem

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T_{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

Uniqueness and applications

Uniqueness part of Pasting Theorem

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T_{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Uniqueness and applications

Uniqueness part of Pasting Theorem

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T_{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Proof

Requires more work than one might expect

Uniqueness and applications

Uniqueness part of Pasting Theorem

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T_{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Proof

Requires more work than one might expect because one has to deal with both "formal composites" and "actual composites."

Uniqueness and applications

Uniqueness part of Pasting Theorem

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T_{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Proof

Requires more work than one might expect because one has to deal with both "formal composites" and "actual composites."

Using these theorems, we can treat weak ω-categories just like strict ones.

Uniqueness and applications

Uniqueness part of Pasting Theorem

Let $\left(X, T_{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T_{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Proof

Requires more work than one might expect because one has to deal with both "formal composites" and "actual composites."

Using these theorems, we can treat weak ω-categories just like strict ones...?

Algebraic weak w-categoriesEquivalences in an algebraic weak ω-category
(3) Weak) equivalences between algebraic weak ω-categories

Weak equivalences

A weak equivalence $F: X \rightarrow Y$ is a $T_{\mathrm{w} k}$-algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

Weak equivalences

A weak equivalence $F: X \rightarrow Y$ is a $T_{\text {w } k}$-algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $\left[\forall y \in Y_{0}\right]\left[\exists x \in X_{0}\right] F x \sim y$, and

Weak equivalences

A weak equivalence $F: X \rightarrow Y$ is a $T_{\text {wk }}$-algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $\left[\forall y \in Y_{0}\right]\left[\exists x \in X_{0}\right] F x \sim y$, and
- $\left[\forall x, x^{\prime} \in X_{0}\right]$ the induced map $X\left(x, x^{\prime}\right) \rightarrow Y\left(F x, F x^{\prime}\right)$ is a weak equivalence.

Weak equivalences

A weak equivalence $F: X \rightarrow Y$ is a $T_{\text {wk }}$-algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $\left[\forall y \in Y_{0}\right]\left[\exists x \in X_{0}\right] F x \sim y$, and
- $\left[\forall x, x^{\prime} \in X_{0}\right]$ the induced map $X\left(x, x^{\prime}\right) \rightarrow Y\left(F x, F x^{\prime}\right)$ is a weak equivalence.

Definition

A weak equivalence $F: X \rightarrow Y$ is a $T_{\mathrm{w} k}$-algebra morphism such that

- F is eso (in the above sense), and
- induced maps between all iterated homs are eso.

Weak equivalences

A weak equivalence $F: X \rightarrow Y$ is a $T_{\text {wk }}$-algebra morphism that is

- essentially surjective on objects, and
- fully faithful.

More explicitly,

- $\left[\forall y \in Y_{0}\right]\left[\exists x \in X_{0}\right] F x \sim y$, and
- $\left[\forall x, x^{\prime} \in X_{0}\right]$ the induced map $X\left(x, x^{\prime}\right) \rightarrow Y\left(F x, F x^{\prime}\right)$ is a weak equivalence.

Definition

A weak equivalence $F: X \rightarrow Y$ is a $T_{\mathrm{w} k}$-algebra morphism such that

- F is eso (in the above sense), and
- induced maps between all iterated homs are eso.

Theorem

The class of weak equivalences enjoys the 2-out-of-3 property. That is, if any two of F, G and $G F$ are weak equivalences then so is the third.

Case 1: F and G are weak equivalences

Case 1: F and G are weak equivalences

[GF is eso]

Case 1: F and G are weak equivalences

[$G F$ is eso]
Let $z \in Z_{0}$.

Case 1: F and G are weak equivalences

[$G F$ is eso]
Let $z \in Z_{0}$.
G is eso $\Longrightarrow \exists y \in Y_{0}$ s.t. $G y \sim z$.

Case 1: F and G are weak equivalences

[$G F$ is eso]
Let $z \in Z_{0}$.
G is eso $\Longrightarrow \exists y \in Y_{0}$ s.t. $G y \sim z$.
F is eso $\Longrightarrow \exists x \in X_{0}$ s.t. $F x \sim y$.

Case 1: F and G are weak equivalences

[$G F$ is eso]
Let $z \in Z_{0}$.
G is eso $\Longrightarrow \exists y \in Y_{0}$ s.t. $G y \sim z$.
F is eso $\Longrightarrow \exists x \in X_{0}$ s.t. $F x \sim y$.
So we have $G F x \sim G y \sim z$

Case 1: F and G are weak equivalences

[$G F$ is eso]
Let $z \in Z_{0}$.
G is eso $\Longrightarrow \exists y \in Y_{0}$ s.t. $G y \sim z$.
F is eso $\Longrightarrow \exists x \in X_{0}$ s.t. $F x \sim y$.
So we have $G F x \sim G y \sim z$, which compose to $G F x \sim z$.

Case 1: F and G are weak equivalences

[$G F$ is eso]
Let $z \in Z_{0}$.
G is eso $\Longrightarrow \exists y \in Y_{0}$ s.t. $G y \sim z$.
F is eso $\Longrightarrow \exists x \in X_{0}$ s.t. $F x \sim y$.
So we have $G F x \sim G y \sim z$, which compose to $G F x \sim z$.
[induced maps are eso]

Case 1: F and G are weak equivalences

[$G F$ is eso]
Let $z \in Z_{0}$.
G is eso $\Longrightarrow \exists y \in Y_{0}$ s.t. $G y \sim z$.
F is eso $\Longrightarrow \exists x \in X_{0}$ s.t. $F x \sim y$.
So we have $G F x \sim G y \sim z$, which compose to $G F x \sim z$.
[induced maps are eso]
Let $x, x^{\prime} \in X_{0}$. Then we have

Case 1: F and G are weak equivalences

[$G F$ is eso]
Let $z \in Z_{0}$.
G is eso $\Longrightarrow \exists y \in Y_{0}$ s.t. $G y \sim z$.
F is eso $\Longrightarrow \exists x \in X_{0}$ s.t. $F x \sim y$.
So we have $G F x \sim G y \sim z$, which compose to $G F x \sim z$.
[induced maps are eso]
Let $x, x^{\prime} \in X_{0}$. Then we have

and we can repeat the argument above.

Case 2: G and $G F$ are weak equivalences

Case 2: G and $G F$ are weak equivalences

[F is eso]
Equally easy.*

Case 2: G and $G F$ are weak equivalences

[F is eso]
Equally easy.*
[induced maps are eso]

Case 2: G and $G F$ are weak equivalences

[F is eso]
Equally easy.*
[induced maps are eso]
Let $x, x^{\prime} \in X_{0}$ and consider

Case 3: F and $G F$ are weak equivalences

Case 3: F and $G F$ are weak equivalences

[G is eso]
Equally easy.

Case 3: F and $G F$ are weak equivalences

[G is eso]
Equally easy.
[induced maps are eso]

Case 3: F and $G F$ are weak equivalences

[G is eso]
Equally easy.
[induced maps are eso]
Let $y, y^{\prime} \in Y_{0}$.

Case 3: F and $G F$ are weak equivalences

[G is eso]
Equally easy.
[induced maps are eso]
Let $y, y^{\prime} \in Y_{0}$. Then we have $F x \sim y$ and $F x^{\prime} \sim y^{\prime}$ for some $x, x^{\prime} \in X_{0}$, but...

Case 3: F and $G F$ are weak equivalences

[G is eso]
Equally easy.
[induced maps are eso]
Let $y, y^{\prime} \in Y_{0}$. Then we have $F x \sim y$ and $F x^{\prime} \sim y^{\prime}$ for some $x, x^{\prime} \in X_{0}$, but...

$$
\begin{gathered}
(G F)_{x, x^{\prime}} \\
X\left(x, x^{\prime}\right) \xrightarrow[F_{x, x^{\prime}}]{ } Y\left(F x, F x^{\prime}\right) \xrightarrow[G_{F x, F x^{\prime}}]{\longrightarrow} Z\left(G F x, G F x^{\prime}\right) \\
Y\left(y, y^{\prime}\right) \xrightarrow[G_{y, y^{\prime}}]{ } Z\left(G y, G y^{\prime}\right)
\end{gathered}
$$

Case 3: F and $G F$ are weak equivalences

[G is eso]
Equally easy.
[induced maps are eso]
Let $y, y^{\prime} \in Y_{0}$. Then we have $F x \sim y$ and $F x^{\prime} \sim y^{\prime}$ for some $x, x^{\prime} \in X_{0}$, but...

We need whiskering!

Whiskering

We want:

Lemma

For an equivalence 1-cell $u: y \rightarrow z$ in a weak ω-category X, the whiskering map

$$
u *(-): X(x, y) \rightarrow X(x, z)
$$

is a weak equivalence

Whiskering

We want:

Lemma

For an equivalence 1-cell $u: y \rightarrow z$ in a weak ω-category X, the whiskering map

$$
u *(-): X(x, y) \rightarrow X(x, z)
$$

is a weak equivalence (except that it's not strictly functorial).

Whiskering

We want:

Lemma

For an equivalence 1-cell $u: y \rightarrow z$ in a weak ω-category X, the whiskering map

$$
u *(-): X(x, y) \rightarrow X(x, z)
$$

is a weak equivalence (except that it's not strictly functorial).
The proof of the strict case (Lafont-Métayer-Worytkiewicz) implicitly relies on:
Obvious fact in strict case

Whiskering

We want:

Lemma

For an equivalence 1-cell $u: y \rightarrow z$ in a weak ω-category X, the whiskering map

$$
u *(-): X(x, y) \rightarrow X(x, z)
$$

is a weak equivalence (except that it's not strictly functorial).
The proof of the strict case (Lafont-Métayer-Worytkiewicz) implicitly relies on:

Obvious fact in strict case

For x, y in a strict ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is (the identity and so in particular) a weak equivalence.

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is a weak equivalence (except that it's not strictly functorial).

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is a weak equivalence (except that it's not strictly functorial).
Constructing the pads is relatively easy,

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is a weak equivalence (except that it's not strictly functorial).
Constructing the pads is relatively easy, but proving

$$
1_{y} *(\text { padded cell }) \sim(\text { original cell })
$$

is tricky because of "formal" vs "actual composites."

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is a weak equivalence (except that it's not strictly functorial).
Constructing the pads is relatively easy, but proving

$$
1_{y} *(\text { padded cell }) \sim(\text { original cell })
$$

is tricky because of "formal" vs "actual composites." We actually prove padded $\left(1_{y} *(\right.$ padded cell $\left.)\right) \sim$ padded (original cell)

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is a weak equivalence (except that it's not strictly functorial).
Constructing the pads is relatively easy, but proving

$$
1_{y} *(\text { padded cell }) \sim(\text { original cell })
$$

is tricky because of "formal" vs "actual composites." We actually prove padded $\left(1_{y} *(\right.$ padded cell $\left.)\right) \sim$ padded (original cell $)=$ padded cell

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is a weak equivalence (except that it's not strictly functorial).
Constructing the pads is relatively easy, but proving

$$
1_{y} *(\text { padded cell }) \sim(\text { original cell })
$$

is tricky because of "formal" vs "actual composites." We actually prove padded $\left(1_{y} *(\right.$ padded cell $\left.)\right) \sim$ padded (original cell $)=$ padded cell and argue
$u *(-)$ is essentially surjective.

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is a weak equivalence (except that it's not strictly functorial).
Constructing the pads is relatively easy, but proving

$$
1_{y} *(\text { padded cell }) \sim(\text { original cell })
$$

is tricky because of "formal" vs "actual composites." We actually prove padded $\left(1_{y} *(\right.$ padded cell $\left.)\right) \sim$ padded (original cell $)=$ padded cell and argue
$1_{y} *(-)$ is essentially surjective $\Longrightarrow u *(-)$ is essentially surjective.

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is a weak equivalence (except that it's not strictly functorial).
Constructing the pads is relatively easy, but proving

$$
1_{y} *(\text { padded cell }) \sim(\text { original cell })
$$

is tricky because of "formal" vs "actual composites." We actually prove padded $\left(1_{y} *(\right.$ padded cell $\left.)\right) \sim$ padded $($ original cell $)=$ padded cell and argue

$$
u *(-) \text { is essentially injective }
$$

$\Longrightarrow 1_{y} *(-)$ is essentially surjective $\Longrightarrow u *(-)$ is essentially surjective.

Padding

We want:

Lemma

For x, y in a weak ω-category X, the whiskering map

$$
1_{y} *(-): X(x, y) \rightarrow X(x, y)
$$

is a weak equivalence (except that it's not strictly functorial).
Constructing the pads is relatively easy, but proving

$$
1_{y} *(\text { padded cell }) \sim(\text { original cell })
$$

is tricky because of "formal" vs "actual composites." We actually prove padded $\left(1_{y} *(\right.$ padded cell $\left.)\right) \sim$ padded $($ original cell $)=$ padded cell and argue
$1_{y} *(-)$ is essentially injective $\Longrightarrow u *(-)$ is essentially injective $\Longrightarrow 1_{y} *(-)$ is essentially surjective $\Longrightarrow u *(-)$ is essentially surjective.

Thank you!

Papers (Fujii-Hoshino-M.)

- Weakly invertible cells in a weak ω-category, to appear in Higher Structures, arXiv:2303.14907
- ω-weak equivalences between weak ω-categories, will put up on arXiv soon
- more to come!

[^0]: ${ }^{1}$ Supported by JSPS Overseas Research Fellowship and Australian Research Council Discovery Project DP190102432
 ${ }^{2}$ Supported by JSPS KAKENHI Grant Number JP21K20329 \& JP23K12960

