What is an ∞-category? Quasi-categories via spines Quasi-categories via inner horns Conclusion

Introduction to ∞-categories in general and quasi-categories in particular

Yuki Maehara

Institute of Mathematics for Industry, Kyushu University

Thursday Seminar, Kyoto

- ① What is an ∞ -category?
- Quasi-categories via spines
- Quasi-categories via inner horns
- Conclusion

Idea

An $\infty\text{-category}$ is a category-like structure for dealing with space-like objects.

Idea

An ∞ -category is a category-like structure for dealing with space-like objects.

(Pedantism: " $(\infty, 1)$ -category" is less ambiguous.)

Idea

An ∞ -category is a category-like structure for dealing with space-like objects.

(Pedantism: " $(\infty, 1)$ -category" is less ambiguous.)

Motivations:

• Application to algebraic geometry, algebraic topology, etc.

Idea

An ∞ -category is a category-like structure for dealing with space-like objects.

```
(Pedantism: "(\infty, 1)-category" is less ambiguous.)
```

Motivations:

- Application to algebraic geometry, algebraic topology, etc.
- Relation to homotopy type theory (as internal language)

Idea

An ∞ -category is a category-like structure for dealing with space-like objects.

```
(Pedantism: "(\infty, 1)-category" is less ambiguous.)
```

Motivations:

- Application to algebraic geometry, algebraic topology, etc.
- Relation to homotopy type theory (as internal language)
- Pure category theory $((\infty, \infty)$ -categories = weak ω -categories)

Idea

An ∞ -category is a category-like structure for dealing with space-like objects.

```
(Pedantism: "(\infty, 1)-category" is less ambiguous.)
```

Motivations:

- Application to algebraic geometry, algebraic topology, etc.
- Relation to homotopy type theory (as internal language)
- Pure category theory $((\infty, \infty)$ -categories = weak ω -categories)

It seems "obvious" that ∞-categories should just be Top-categories, but...

Definition

Definition

Given a monoidal category $\mathscr V$, a $\mathscr V$ -category $\mathscr A$ consists of:

a set of objects Ob(A);

Definition

- a set of objects Ob(A);
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;

Definition

- a set of objects Ob(\(\mathref{A} \));
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;
- unit maps $I \to \mathscr{A}(A,A)$ in \mathscr{V} ; and

Definition

- a set of objects Ob(\(\mathscr{A} \));
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;
- unit maps $I \to \mathscr{A}(A,A)$ in \mathscr{V} ; and
- \bullet composition maps $\mathscr{A}(B,C)\otimes\mathscr{A}(A,B)\to\mathscr{A}(A,C)$ in \mathscr{V}

Definition

- a set of objects Ob(A);
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;
- unit maps $I \to \mathscr{A}(A,A)$ in \mathscr{V} ; and
- composition maps $\mathscr{A}(B,C)\otimes\mathscr{A}(A,B)\to\mathscr{A}(A,C)$ in $\mathscr V$ satisfying the usual axioms.

Definition

Given a monoidal category $\mathscr V$, a $\mathscr V$ -category $\mathscr A$ consists of:

- a set of objects Ob(\(\mathscr{A} \));
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;
- ullet unit maps $I \to \mathscr{A}(A,A)$ in \mathscr{V} ; and
- composition maps $\mathscr{A}(B,C)\otimes\mathscr{A}(A,B)\to\mathscr{A}(A,C)$ in $\mathscr V$ satisfying the usual axioms.

Intuition: objects in $\mathscr A$ "behave like" objects in $\mathscr V.$

Definition

Given a monoidal category $\mathscr V$, a $\mathscr V$ -category $\mathscr A$ consists of:

- a set of objects Ob(\(\mathscr{A} \));
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;
- unit maps $I \to \mathscr{A}(A,A)$ in \mathscr{V} ; and
- composition maps $\mathscr{A}(B,C)\otimes\mathscr{A}(A,B)\to\mathscr{A}(A,C)$ in \mathscr{V} satisfying the usual axioms.

Intuition: objects in $\mathscr A$ "behave like" objects in $\mathscr V$. (This can be made more precise via Yoneda embedding $\mathscr A\hookrightarrow [\mathscr A^\mathrm{op},\mathscr V]$.)

Definition

Given a monoidal category $\mathscr V$, a $\mathscr V$ -category $\mathscr A$ consists of:

- a set of objects Ob(\(\mathscr{A} \));
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;
- unit maps $I \to \mathscr{A}(A,A)$ in \mathscr{V} ; and
- composition maps $\mathscr{A}(B,C)\otimes\mathscr{A}(A,B)\to\mathscr{A}(A,C)$ in \mathscr{V} satisfying the usual axioms.

Intuition: objects in $\mathscr A$ "behave like" objects in $\mathscr V$. (This can be made more precise via Yoneda embedding $\mathscr A\hookrightarrow [\mathscr A^{\mathrm{op}},\mathscr V]$.)

Definition

A \mathscr{V} -functor $F: \mathscr{A} \to \mathscr{B}$ consists of:

Definition

Given a monoidal category $\mathscr V$, a $\mathscr V$ -category $\mathscr A$ consists of:

- a set of objects Ob(\(\mathscr{A} \));
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;
- unit maps $I \to \mathscr{A}(A,A)$ in \mathscr{V} ; and
- composition maps $\mathscr{A}(B,C)\otimes\mathscr{A}(A,B)\to\mathscr{A}(A,C)$ in \mathscr{V} satisfying the usual axioms.

Intuition: objects in $\mathscr A$ "behave like" objects in $\mathscr V$. (This can be made more precise via Yoneda embedding $\mathscr A\hookrightarrow [\mathscr A^{\mathrm{op}},\mathscr V]$.)

Definition

A \mathscr{V} -functor $F: \mathscr{A} \to \mathscr{B}$ consists of:

• a function $F: \mathrm{Ob}(\mathscr{A}) \to \mathrm{Ob}(\mathscr{B})$; and

Definition

Given a monoidal category $\mathscr V$, a $\mathscr V$ -category $\mathscr A$ consists of:

- a set of objects Ob(A);
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;
- unit maps $I \to \mathscr{A}(A,A)$ in \mathscr{V} ; and
- composition maps $\mathscr{A}(B,C)\otimes\mathscr{A}(A,B)\to\mathscr{A}(A,C)$ in \mathscr{V} satisfying the usual axioms.

Intuition: objects in $\mathscr A$ "behave like" objects in $\mathscr V$. (This can be made more precise via Yoneda embedding $\mathscr A\hookrightarrow [\mathscr A^{\mathrm{op}},\mathscr V]$.)

Definition

A \mathscr{V} -functor $F: \mathscr{A} \to \mathscr{B}$ consists of:

- a function $F: \mathrm{Ob}(\mathscr{A}) \to \mathrm{Ob}(\mathscr{B})$; and
- ullet maps $F_{A,B}: \mathscr{A}(A,B) o \mathscr{B}(FA,FB)$ in \mathscr{V}

Definition

Given a monoidal category $\mathscr V$, a $\mathscr V$ -category $\mathscr A$ consists of:

- a set of objects Ob(A);
- hom-objects $\mathscr{A}(A,B) \in \mathscr{V}$;
- unit maps $I \to \mathscr{A}(A,A)$ in \mathscr{V} ; and
- composition maps $\mathscr{A}(B,C)\otimes\mathscr{A}(A,B)\to\mathscr{A}(A,C)$ in \mathscr{V} satisfying the usual axioms.

Intuition: objects in $\mathscr A$ "behave like" objects in $\mathscr V$. (This can be made more precise via Yoneda embedding $\mathscr A\hookrightarrow [\mathscr A^{\mathrm{op}},\mathscr V]$.)

Definition

A \mathscr{V} -functor $F: \mathscr{A} \to \mathscr{B}$ consists of:

- a function $F: \mathrm{Ob}(\mathscr{A}) \to \mathrm{Ob}(\mathscr{B})$; and
- ullet maps $F_{A,B}: \mathscr{A}(A,B) o \mathscr{B}(FA,FB)$ in \mathscr{V}

satisfying the usual axioms.

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

e.g. isomorphism vs equality

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

- e.g. isomorphism vs equality
 - limit-preserving functors between categories:

$$\lim FDi \cong F(\lim Di)$$

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

- e.g. isomorphism vs equality
 - limit-preserving functors between categories:

$$\lim FDi \cong F(\lim Di)$$

• strong monoidal functors between monoidal categories:

$$FX \otimes FY \cong F(X \otimes Y)$$

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

- e.g. isomorphism vs equality
 - limit-preserving functors between categories:

$$\lim FDi \cong F(\lim Di)$$

• strong monoidal functors between monoidal categories:

$$FX \otimes FY \cong F(X \otimes Y)$$

• pseudo-functors between 2-categories (= Cat-categories):

$$FgFf \cong F(gf)$$

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

- e.g. isomorphism vs equality
 - limit-preserving functors between categories:

$$\lim FDi \cong F(\lim Di)$$

• strong monoidal functors between monoidal categories:

$$FX \otimes FY \cong F(X \otimes Y)$$

• pseudo-functors between 2-categories (= <u>Cat</u>-categories):

$$FgFf \cong F(gf)$$

In Top-category \mathscr{A}

Parallel arrows $f, g: A \to B$ may be connected by a path in $\mathscr{A}(A, B)$.

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

- e.g. isomorphism vs equality
 - limit-preserving functors between categories:

$$\lim FDi \cong F(\lim Di)$$

• strong monoidal functors between monoidal categories:

$$FX \otimes FY \cong F(X \otimes Y)$$

ullet pseudo-functors between 2-categories (= $\underline{\mathrm{Cat}}$ -categories):

$$FgFf \cong F(gf)$$

In Top-category \mathscr{A}

Parallel arrows $f, g: A \to B$ may be connected by a path in $\mathscr{A}(A, B)$.

Path in
$$\mathcal{A}(A,B)$$

from f to g

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

- e.g. isomorphism vs equality
 - limit-preserving functors between categories:

$$\lim FDi \cong F(\lim Di)$$

• strong monoidal functors between monoidal categories:

$$FX \otimes FY \cong F(X \otimes Y)$$

• pseudo-functors between 2-categories (= <u>Cat</u>-categories):

$$FgFf \cong F(gf)$$

In Top-category \mathscr{A}

Parallel arrows $f, g: A \to B$ may be connected by a path in $\mathscr{A}(A, B)$.

Path in
$$\mathcal{A}(A,B)$$
 $(I \to \mathcal{A}(A,B))$ from f to g

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

- e.g. isomorphism vs equality
 - limit-preserving functors between categories:

$$\lim FDi \cong F(\lim Di)$$

strong monoidal functors between monoidal categories:

$$FX \otimes FY \cong F(X \otimes Y)$$

• pseudo-functors between 2-categories (= \underline{Cat} -categories):

$$FgFf \cong F(gf)$$

In Top-category \mathscr{A}

Parallel arrows $f, g: A \to B$ may be connected by a path in $\mathscr{A}(A, B)$.

Guiding principle

When there is a weaker notion of equivalence than the equality, the "correct" morphisms should respect the former rather than the latter.

- e.g. isomorphism vs equality
 - limit-preserving functors between categories:

$$\lim FDi \cong F(\lim Di)$$

strong monoidal functors between monoidal categories:

$$FX \otimes FY \cong F(X \otimes Y)$$

• pseudo-functors between 2-categories (= \underline{Cat} -categories):

$$FgFf \cong F(gf)$$

In Top-category \mathscr{A}

Parallel arrows $f,g:A\to B$ may be connected by a path in $\mathscr{A}(A,B)$.

Path in
$$\mathscr{A}(A,B)$$
 $(I \to \mathscr{A}(A,B))$ from f to g

Homotopy
$$H: "A \times I" \to B$$
 with $H(-,0) = f$ and $H(-,1) = g$.

Given (
$$\cdot \stackrel{f}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \cdot \stackrel{g}{-\!\!\!\!-\!\!\!\!-} \cdot$$
) in a $\underline{\text{Top}}\text{-category }\mathscr{A}...$

Given
$$\left(\begin{array}{ccc} \cdot & \xrightarrow{f} \cdot & \xrightarrow{g} \cdot \end{array}\right)$$
 in a Top-category $\mathscr{A}...$

ullet "correct" morphism $F: \mathscr{A} \to \mathscr{B}$ should just satisfy $FgFf \sim F(gf)$; but

Given
$$\left(\begin{array}{ccc} \cdot & \xrightarrow{f} \cdot & \xrightarrow{g} \cdot \end{array}\right)$$
 in a $\underline{\text{Top}}$ -category $\mathscr{A}...$

- ullet "correct" morphism $F: \mathscr{A} \to \mathscr{B}$ should just satisfy $FgFf \sim F(gf)$; but
- $\bullet \ \underline{\text{Top-}} \text{functor} \ F: \mathscr{A} \to \mathscr{B} \ \text{would satisfy} \ FgFf = F(gf).$

"Correct" morphisms between $\overline{\mathrm{Top}}$ -categories?

Given
$$\left(\begin{array}{ccc} \cdot & \xrightarrow{f} \cdot & \xrightarrow{g} \cdot \end{array}\right)$$
 in a $\underline{\text{Top}}$ -category \mathscr{A} ...

- ullet "correct" morphism $F: \mathscr{A} \to \mathscr{B}$ should just satisfy $FgFf \sim F(gf)$; but
- $\bullet \ \underline{\text{Top-functor}} \ F: \mathscr{A} \to \mathscr{B} \ \text{would satisfy} \ FgFf = F(gf).$

Problem

The structure of a $\underline{\text{Top}}$ -category remembers unnecessary information (i.e. whether two morphisms are equal).

Given
$$\left(\begin{array}{ccc} \cdot & \xrightarrow{f} \cdot & \xrightarrow{g} \cdot \end{array}\right)$$
 in a $\underline{\text{Top}}$ -category $\mathscr{A}...$

- "correct" morphism $F: \mathscr{A} \to \mathscr{B}$ should just satisfy $FgFf \sim F(gf)$; but
- $\bullet \ \ \text{Top-functor} \ F: \mathscr{A} \to \mathscr{B} \ \text{would satisfy} \ FgFf = F(gf).$

Problem

The structure of a $\underline{\text{Top}}$ -category remembers unnecessary information (*i.e.* whether two morphisms are equal).

Solution

Use something that only remembers whether two morphisms are homotopic.

Given
$$\left(\begin{array}{ccc} \cdot & \xrightarrow{f} \cdot & \xrightarrow{g} \cdot \end{array}\right)$$
 in a $\underline{\text{Top}}$ -category \mathscr{A} ...

- "correct" morphism $F: \mathscr{A} \to \mathscr{B}$ should just satisfy $FgFf \sim F(gf)$; but
- $\bullet \ \ \text{Top-functor} \ F: \mathscr{A} \to \mathscr{B} \ \text{would satisfy} \ FgFf = F(gf).$

Problem

The structure of a $\underline{\text{Top}}$ -category remembers unnecessary information (*i.e.* whether two morphisms are equal).

Solution

Use something that only remembers whether two morphisms are homotopic.

This leads to the more "combinatorial" models for ∞ -categories.

"Correct" morphisms between Top-categories?

Given
$$\left(\begin{array}{ccc} \cdot & \stackrel{f}{\longrightarrow} \cdot & \stackrel{g}{\longrightarrow} \cdot \end{array}\right)$$
 in a $\underline{\text{Top}}\text{-category }\mathscr{A}...$

- "correct" morphism $F: \mathscr{A} \to \mathscr{B}$ should just satisfy $FgFf \sim F(gf)$; but
- $\bullet \ \ \text{Top-functor} \ F: \mathscr{A} \to \mathscr{B} \ \text{would satisfy} \ FgFf = F(gf).$

Problem

The structure of a $\underline{\text{Top}}$ -category remembers unnecessary information (*i.e.* whether two morphisms are equal).

Solution

Use something that only remembers whether two morphisms are homotopic.

This leads to the more "combinatorial" models for ∞ -categories. (These different models have been shown to be equivalent to each other in a suitable sense.)

- What is an ∞-category?
- Quasi-categories via spines
- Quasi-categories via inner horns
- 4 Conclusion

Definition

For $n \ge 0$, let [n] denote the free category generated by:

$$0 \to 1 \to \cdots \to n$$

Definition

For $n \ge 0$, let [n] denote the free category generated by:

$$0 \to 1 \to \cdots \to n$$

Denote by $\Delta \subset \underline{\mathrm{Cat}}$ the full subcategory spanned by those [n].

Definition

For $n \ge 0$, let [n] denote the free category generated by:

$$0 \to 1 \to \cdots \to n$$

Denote by $\Delta \subset \underline{\mathrm{Cat}}$ the full subcategory spanned by those [n].

Definition

The (fully faithful) nerve functor $N: \underline{\mathrm{Cat}} \to \underline{\mathrm{sSet}} = [\Delta^{\mathrm{op}}, \underline{\mathrm{Set}}]$ is given by

$$N\mathscr{A} = \underline{\mathrm{Cat}}(-, \mathscr{A}).$$

Definition

For $n \ge 0$, let [n] denote the free category generated by:

$$0 \to 1 \to \cdots \to n$$

Denote by $\Delta \subset \underline{\operatorname{Cat}}$ the full subcategory spanned by those [n].

Definition

The (fully faithful) nerve functor $N: \underline{\mathrm{Cat}} \to \underline{\mathrm{sSet}} = [\Delta^{\mathrm{op}}, \underline{\mathrm{Set}}]$ is given by

$$N\mathscr{A} = \underline{\mathrm{Cat}}(-, \mathscr{A}).$$

• $(N\mathscr{A})_0 = \text{objects in } \mathscr{A}$

Definition

For $n \ge 0$, let [n] denote the free category generated by:

$$0 \to 1 \to \cdots \to n$$

Denote by $\Delta \subset \underline{\operatorname{Cat}}$ the full subcategory spanned by those [n].

Definition

The (fully faithful) nerve functor $N: \underline{\mathrm{Cat}} \to \underline{\mathrm{sSet}} = [\Delta^\mathrm{op}, \underline{\mathrm{Set}}]$ is given by

$$N\mathscr{A} = \underline{\mathrm{Cat}}(-, \mathscr{A}).$$

- $(N\mathscr{A})_0 = \text{objects in } \mathscr{A}$
- $(N\mathscr{A})_1 = \text{morphisms in } \mathscr{A}$

Definition

For $n \ge 0$, let [n] denote the free category generated by:

$$0 \to 1 \to \cdots \to n$$

Denote by $\Delta \subset \underline{\operatorname{Cat}}$ the full subcategory spanned by those [n].

Definition

The (fully faithful) nerve functor $N: \underline{\mathrm{Cat}} \to \underline{\mathrm{sSet}} = [\Delta^\mathrm{op}, \underline{\mathrm{Set}}]$ is given by

$$N\mathscr{A} = \underline{\mathrm{Cat}}(-, \mathscr{A}).$$

- $(N\mathscr{A})_0 = \text{objects in } \mathscr{A}$
- $(N\mathscr{A})_1 = \text{morphisms in } \mathscr{A}$
- $(N\mathscr{A})_2 = \text{commutative triangles in } \mathscr{A}$

Quasi-categories, intuitively

Idea

A quasi-category is $X \in \underline{\mathrm{sSet}}$ that "behaves like" $N\mathscr{A}$ for some $\mathscr{A} \in \underline{\mathrm{Cat}}$ except the simplices are only "commutative up to homotopy".

Quasi-categories, intuitively

Idea

A quasi-category is $X \in \underline{\mathrm{sSet}}$ that "behaves like" $N\mathscr{A}$ for some $\mathscr{A} \in \underline{\mathrm{Cat}}$ except the simplices are only "commutative up to homotopy".

Quasi-categories, intuitively

Idea

A quasi-category is $X \in \underline{\mathrm{sSet}}$ that "behaves like" $N\mathscr{A}$ for some $\mathscr{A} \in \underline{\mathrm{Cat}}$ except the simplices are only "commutative up to homotopy".

e.g. 2-simplex
$$\bullet \xrightarrow{f} \bullet \bullet$$
 in X should be thought of as witnessing
$$\bullet \bullet \bullet$$
 rather than $gf = h$.

The precise definition may be obtained by "homotopifying" a characterisation of $N\mathscr{A}$'s in sSet.

Each
$$\Delta^n = \Delta(-, [n])$$
 has spine $\Xi^n \subset \Delta^n$:

Each
$$\Delta^n = \Delta(-, [n])$$
 has spine $\Xi^n \subset \Delta^n$:

	Δ^n	Ξ^n	
n = 0	0	0	
n = 1	0	0	

Each $\Delta^n = \Delta(-, [n])$ has spine $\Xi^n \subset \Delta^n$:

	Δ^n	Ξ^n
n = 0	0	0
n=1	0	0
n = 2	$0 \xrightarrow{1} 2$	

Each $\Delta^n = \Delta(-, [n])$ has spine $\Xi^n \subset \Delta^n$:

	Δ^n	Ξ^n
n = 0	0	0
n = 1	0	0
n = 2	$0 \xrightarrow{1} 2$	
n=3		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Each $\Delta^n = \Delta(-, [n])$ has spine $\Xi^n \subset \Delta^n$:

	Δ^n	Ξ^n
n = 0	0	0
n = 1	0	0
n = 2	$0 \xrightarrow{1} 2$	
n = 3		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Characterisation

Each $\Delta^n = \Delta(-, [n])$ has spine $\Xi^n \subset \Delta^n$:

	Δ^n	Ξ^n
n = 0	0	0
n = 1	0	0
n = 2	$0 \xrightarrow{1} 2$	
n=3		$\begin{array}{c c} 1 & \rightarrow & 2 \\ \nearrow & & \searrow \\ 0 & & 3 \end{array}$

Characterisation

 $X \in \underline{\operatorname{sSet}}$ is of the form $X \cong N \mathscr{A}$ for some $\mathscr{A} \in \underline{\operatorname{Cat}}$ iff:

Characterisation

 $X \in \operatorname{\underline{sSet}}$ is of the form $X \cong N \mathscr{A}$ for some $\mathscr{A} \in \operatorname{\underline{Cat}}$ iff:

- any $\Xi^n \to X$ extends to some $\Delta^n \to X$;
- if $f, g: \Delta^n \to X$ satisfy $f \upharpoonright \Xi^n = g \upharpoonright \Xi^n$ then f = g.

Characterisation

 $X \in \operatorname{\underline{sSet}}$ is of the form $X \cong N \mathscr{A}$ for some $\mathscr{A} \in \operatorname{\underline{Cat}}$ iff:

- any $\Xi^n \to X$ extends to some $\Delta^n \to X$;
- if $f,g:\Delta^n\to X$ satisfy $f\upharpoonright\Xi^n=g\upharpoonright\Xi^n$ then f=g.

Replace equality by homotopy wrt suitable interval $I \in \mathrm{sSet}$;

Characterisation

 $X \in \operatorname{\underline{sSet}}$ is of the form $X \cong N \mathscr{A}$ for some $\mathscr{A} \in \operatorname{\underline{Cat}}$ iff:

- any $\Xi^n \to X$ extends to some $\Delta^n \to X$;
- if $f,g:\Delta^n \to X$ satisfy $f \upharpoonright \Xi^n = g \upharpoonright \Xi^n$ then f=g.

Replace equality by homotopy wrt suitable interval $I \in \mathrm{sSet}$;

$$f \sim g \iff \exists H: A \times I \to X \text{ with } H(-,0) = f \text{ and } H(-,1) = g.$$

Definition

Characterisation

 $X \in \underline{\operatorname{sSet}}$ is a quasi-category iff:

- any $\Xi^n \to X$ extends to some $\Delta^n \to X$;
- if $f, g: \Delta^n \to X$ satisfy $f \upharpoonright \Xi^n \sim g \upharpoonright \Xi^n$ then $f \sim g$.

Replace equality by homotopy wrt suitable interval $I \in \mathrm{sSet}$;

$$f \sim g \iff \exists H : A \times I \to X \text{ with } H(-,0) = f \text{ and } H(-,1) = g.$$

Definition

Characterisation

 $X \in \underline{\operatorname{sSet}}$ is a quasi-category iff:

- any $\Xi^n \to X$ extends to some $\Delta^n \to X$;
- if $f,g:\Delta^n\to X$ satisfy $f\upharpoonright \Xi^n\sim g\upharpoonright \Xi^n$ then $f\sim g$.
- if $f \sim g : A \to X$ and f extends to $f' : A' \to X$ for some $A' \supset A$ then g extends to $g' : A' \to X$ with $f' \sim g'$.

Replace equality by homotopy wrt suitable interval $I \in \underline{\operatorname{sSet}}$;

$$f \sim g \iff \exists H: A \times I \to X \text{ with } H(-,0) = f \text{ and } H(-,1) = g.$$

Definition

Characterisation

 $X \in \underline{\operatorname{sSet}}$ is a quasi-category iff:

- any $\Xi^n \to X$ extends to some $\Delta^n \to X$;
- if $f,g:\Delta^n\to X$ satisfy $f\upharpoonright \Xi^n\sim g\upharpoonright \Xi^n$ then $f\sim g$.
- if $f \sim g : A \to X$ and f extends to $f' : A' \to X$ for some $A' \supset A$ then g extends to $g' : A' \to X$ with $f' \sim g'$.

Replace equality by homotopy wrt suitable interval $I \in \underline{\operatorname{sSet}};$ $f \sim g \iff \exists H: A \times I \to X \text{ with } H(-,0) = f \text{ and } H(-,1) = g.$

Last clause is a form of Indiscernibility of Identicals;

Definition

Characterisation

 $X \in \underline{\operatorname{sSet}}$ is a quasi-category iff:

- any $\Xi^n \to X$ extends to some $\Delta^n \to X$;
- if $f,g:\Delta^n\to X$ satisfy $f\upharpoonright \Xi^n\sim g\upharpoonright \Xi^n$ then $f\sim g$.
- if $f \sim g : A \to X$ and f extends to $f' : A' \to X$ for some $A' \supset A$ then g extends to $g' : A' \to X$ with $f' \sim g'$.

Replace equality by homotopy wrt suitable interval $I \in \underline{\operatorname{sSet}}$;

$$f \sim g \iff \exists H: A \times I \to X \text{ with } H(-,0) = f \text{ and } H(-,1) = g.$$

Last clause is a form of Indiscernibility of Identicals; intuitively,

ullet f and g are "equivalent A-shaped points in X";

Definition

Characterisation

 $X \in \underline{\operatorname{sSet}}$ is a quasi-category iff:

- any $\Xi^n \to X$ extends to some $\Delta^n \to X$;
- if $f,g:\Delta^n\to X$ satisfy $f\upharpoonright \Xi^n\sim g\upharpoonright \Xi^n$ then $f\sim g$.
- if $f \sim g : A \to X$ and f extends to $f' : A' \to X$ for some $A' \supset A$ then g extends to $g' : A' \to X$ with $f' \sim g'$.

Replace equality by homotopy wrt suitable interval $I \in \underline{\operatorname{sSet}}$;

$$f \sim g \iff \exists H: A \times I \to X \text{ with } H(-,0) = f \text{ and } H(-,1) = g.$$

Last clause is a form of Indiscernibility of Identicals; intuitively,

- f and g are "equivalent A-shaped points in X";
- f' witnesses that f has some extra property;

Definition

Characterisation

 $X \in \underline{\operatorname{sSet}}$ is a quasi-category iff:

- any $\Xi^n \to X$ extends to some $\Delta^n \to X$;
- if $f,g:\Delta^n\to X$ satisfy $f\upharpoonright \Xi^n\sim g\upharpoonright \Xi^n$ then $f\sim g$.
- if $f \sim g : A \to X$ and f extends to $f' : A' \to X$ for some $A' \supset A$ then g extends to $g' : A' \to X$ with $f' \sim g'$.

Replace equality by homotopy wrt suitable interval $I \in \underline{\operatorname{sSet}}$;

$$f \sim g \iff \exists H: A \times I \to X \text{ with } H(-,0) = f \text{ and } H(-,1) = g.$$

Last clause is a form of Indiscernibility of Identicals; intuitively,

- f and g are "equivalent A-shaped points in X";
- f' witnesses that f has some extra property;
- ullet we ask that g share the same property.

- What is an ∞-category?
- Quasi-categories via spines
- Quasi-categories via inner horns
- 4 Conclusion

Each
$$\Delta^n = \Delta \left(-, [n] \right)$$
 has boundary $\partial \Delta^n \subset \Delta^n$ consisting of δ_i (face opposite to vertex i) with $0 \le i \le n$:

Each $\Delta^n = \Delta \left(-, [n] \right)$ has boundary $\partial \Delta^n \subset \Delta^n$ consisting of δ_i (face opposite to vertex i) with $0 \le i \le n$:

	Δ^n	$\partial \Delta^n$
n = 0	0	Ø

Each $\Delta^n = \Delta(-, [n])$ has boundary $\partial \Delta^n \subset \Delta^n$ consisting of δ_i (face opposite to vertex i) with $0 \le i \le n$:

	Δ^n	$\partial \Delta^n$
n = 0	0	Ø
n = 1	0	$\delta_1 = 0 \qquad \qquad 1 = \delta_0$

Each $\Delta^n = \Delta(-, [n])$ has boundary $\partial \Delta^n \subset \Delta^n$ consisting of δ_i (face opposite to vertex i) with $0 \le i \le n$:

	Δ^n	$\partial \Delta^n$
n = 0	0	Ø
n = 1	0	$\delta_1 = 0 \qquad \qquad 1 = \delta_0$
n=2	0 2	$0 \xrightarrow{\delta_2} 1 \xrightarrow{\delta_0} 2$

Each $\Delta^n = \Delta(-, [n])$ has boundary $\partial \Delta^n \subset \Delta^n$ consisting of δ_i (face opposite to vertex i) with $0 \le i \le n$:

	Δ^n	$\partial \Delta^n$
n = 0	0	Ø
n = 1	0	$\delta_1 = 0 1 = \delta_0$
n = 2		$0 \xrightarrow{\delta_2 \nearrow 1} \delta_0 \\ 0 \xrightarrow{\delta_1} 2$
n=3		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Each $\Delta^n = \Delta(-, [n])$ has boundary $\partial \Delta^n \subset \Delta^n$ consisting of δ_i (face opposite to vertex i) with $0 \le i \le n$:

	Δ^n	$\partial \Delta^n$
n = 0	0	Ø
n = 1	0	$\delta_1 = 0 \qquad \qquad 1 = \delta_0$
n = 2		$0 \xrightarrow{\delta_2 \atop \delta_1} \begin{array}{c} 1 \\ \delta_0 \\ \hline \\ \delta_1 \end{array}$
n = 3	$\begin{array}{c} 1 \longrightarrow 2 \\ 0 \longrightarrow 3 \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

The *i*-th horn $\Lambda_i^n \subset \Delta^n$ is $\partial \Delta^n$ with δ_i removed;

Each $\Delta^n = \Delta(-, [n])$ has boundary $\partial \Delta^n \subset \Delta^n$ consisting of δ_i (face opposite to vertex i) with $0 \le i \le n$:

	Δ^n	$\partial \Delta^n$
n = 0	0	Ø
n = 1	0	$\delta_1 = 0 \qquad \qquad 1 = \delta_0$
n = 2		$0 \xrightarrow{\delta_2} 1 \xrightarrow{\delta_0} 2$
n=3		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

The *i*-th horn $\Lambda_i^n \subset \Delta^n$ is $\partial \Delta^n$ with δ_i removed; it is inner if $1 \le i \le n-1$.

Quasi-categories via inner horns

Definition

A quasi-category is $X \in \underline{\operatorname{sSet}}$ with

for all inner $\Lambda^n_i \subset \Delta^n$.

Quasi-categories via inner horns

Definition

A quasi-category is $X \in \operatorname{\underline{sSet}}$ with

for all inner $\Lambda^n_i \subset \Delta^n$.

• $\Lambda_1^2 \hookrightarrow \Delta^2$ encodes existence of composites:

Definition

A quasi-category is $X \in \underline{\operatorname{sSet}}$ with

for all inner $\Lambda^n_i \subset \Delta^n$.

• $\Lambda_1^2 \hookrightarrow \Delta^2$ encodes existence of composites:

$$x \xrightarrow{f} g$$

Definition

A quasi-category is $X \in \operatorname{\underline{sSet}}$ with

 $\int\limits_{\exists}^{\pi} \quad \text{for all inner } \Lambda^n_i \subset \Delta^n.$

• $\Lambda_1^2 \hookrightarrow \Delta^2$ encodes existence of composites:

• $\Lambda_1^3 \hookrightarrow \Delta^3$ encodes uniqueness of composites (up to homotopy):

Definition

A quasi-category is $X \in \underline{\operatorname{sSet}}$ with

• $\Lambda^2_{\scriptscriptstyle 1} \hookrightarrow {\color{red} \Delta^2}$ encodes existence of composites:

• $\Lambda_1^3 \hookrightarrow \Delta^3$ encodes uniqueness of composites (up to homotopy):

Definition

A quasi-category is $X \in \operatorname{sSet}$ with

 $\int\limits_{\exists}^{\pi} \text{ for all inner } \Lambda^n_i \subset \Delta^n.$

• $\Lambda_1^2 \hookrightarrow \Delta^2$ encodes existence of composites:

• $\Lambda_1^3 \hookrightarrow \Delta^3$ encodes uniqueness of composites (up to homotopy):

Definition

A quasi-category is $X \in \operatorname{sSet}$ with

 $\int\limits_{\exists}^{\exists} \text{ for all inner } \Lambda^n_i \subset \Delta^n.$

Definition

Definition

A quasi-category is $X\in\underline{\mathrm{sSet}}$ with $\int\limits_{\exists}^{\Lambda_i} \text{ for all inner } \Lambda^n_i\subset\Delta^n.$

Definition

A quasi-category is $X \in \operatorname{sSet}$ with

 $\qquad \qquad \text{for all inner } \Lambda^n_i \subset \Delta^n.$

Definition

A quasi-category is $X\in\underline{\operatorname{sSet}}$ with $\int_{\mathbb{B}}^{\pi} \operatorname{for\ all\ inner}\ \Lambda_{i}^{n}\subset\Delta^{n}.$

• $\Lambda_1^3 \hookrightarrow \Delta^3$ also encodes associativity of composition (up to homotopy):

Higher-dimensional horns encode "higher coherence".

- \bigcirc What is an ∞ -category?
- Quasi-categories via spines
- Quasi-categories via inner horns
- 4 Conclusion

Idea

An ∞ -category is a category-like structure for dealing with space-like objects.

Idea

An ∞ -category is a category-like structure for dealing with space-like objects.

Problem

The "obvious" model for ∞-categories is Top-categories, but hard to describe the "correct" morphisms between them.

Idea

An ∞ -category is a category-like structure for dealing with space-like objects.

Problem

The "obvious" model for ∞-categories is Top-categories, but hard to describe the "correct" morphisms between them.

Solution

Use more "combinatorial" models like quasi-categories. More precisely,

- characterise $N\mathscr{A}$'s among sSet using spines; and
- replace equality in that characterisation by homotopy.

Idea

An ∞ -category is a category-like structure for dealing with space-like objects.

Problem

The "obvious" model for ∞-categories is Top-categories, but hard to describe the "correct" morphisms between them.

Solution

Use more "combinatorial" models like quasi-categories. More precisely,

- characterise $N\mathscr{A}$'s among sSet using spines; and
- replace equality in that characterisation by homotopy.

In practice

Alternative definition of quasi-category using inner horns is much more popular.

• Developed inner horns for 2-quasi-categories.

• Developed inner horns for 2-quasi-categories.

• Used those horns to analyse Gray tensor product for 2-quasi-categories.

• Developed inner horns for 2-quasi-categories.

- Used those horns to analyse Gray tensor product for 2-quasi-categories.
- Proposed a cubical model for (∞, ∞) -categories. (j/w Tim Campion and Chris Kapulkin)

• Developed inner horns for 2-quasi-categories.

- Used those horns to analyse Gray tensor product for 2-quasi-categories.
- Proposed a cubical model for (∞, ∞) -categories. (j/w Tim Campion and Chris Kapulkin)

• Proved freeness of certain simplicial (∞, ∞) -categories.