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Weak ω-categories?

0-cells 1-cells 2-cells · · ·

· · ·

Our weak ω-categories will be globular sets, i.e. presheaves over

0 1 2 . . .
s

t

s

t

s

t
where ss = ts and st = tt,

equipped with extra structure encoded by a monad Twk.

Question

How should we define Twk?

We should have {strict ω-cats} ⊂ {weak ω-cats}, or equivalently a monad map
α : Twk → T st.
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T st1

The terminal globular set 1 has:

a unique 0-cell x0,

a unique 1-cell x1 : x0 → x0,

a unique 2-cell x2 : x1 → x1, . . .

In 1, everything is composable along everything. So

(T st1)n = {n-dimensional (globular) pasting schemes}.

e.g.

(T st1)1 = { , , , · · · }

(T st1)2 contains cells like ,

but not
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Twk1

In the weak case, e.g. (→→)→ and →(→→) should be distinct cells in Twk1.

(T st1)n = {n-dimensional pasting schemes}

(Twk1)n = {n-dimensional pasting instructions}

Existence part of Pasting Theorem

We ask that any commutative square

∂Gn Twk1

Gn T st1

α1

admit a chosen diagonal lift for n ≥ 1.
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Twk

For a general globular set X, we want

TwkX = {cells in Twk1 decorated with cells in X}.

Definition (Leinster)

Twk is the

initial

monad over T st such that

α1 : Twk1 → T st1 satisfies the existence part of the Pasting Theorem, and

for any globular set X,

TwkX Twk1

T stX T st1

αX α1

is a pullback.

By a weak ω-category, we mean a Twk-algebra.
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Lifting cells

Note that αX inherits the lifting property from α1:

∂Gn TwkX Twk1

Gn T stX T st1

αX α1

So if we have ξ : TwkX → X, we can take any cell in T stX, lift it to TwkX,
and interpret it in X. This gives us e.g. “identities” and “compositions.”

But we can’t lift equalities between cells; more precisely, the resulting lifts are
only equivalences.
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Equivalences?

What should we mean by “equivalence” in this context?

Finite dimensional case

In an n-category, an “equivalence k-cell” should be something that is:

strictly invertible for k = n,

invertible up to equivalence n-cell for k = n− 1,

invertible up to equivalence (n− 1)-cell for k = n− 2,

. . .

When n = ω, we can’t define it inductively because there is no top dimension;

but we can define it coinductively.
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Coinductive equivalences

Definition

An n-cell f : x → y (with n ≥ 1) is an equivalence if

there exist:

an n-cell g : y → x,

an equivalence (n+ 1)-cell gf → 1x, and

an equivalence (n+ 1)-cell fg → 1y.

To exhibit a 1-cell f : x → y as an equivalence, we must provide

a 1-cell g : y → x,

an equivalence 2-cell h : gf → 1x,

a 2-cell h′ : 1x → gf ,
an equivalence 3-cell h′h → 1gf ,
an equivalence 3-cell hh′ → 11x ,

an equivalence 2-cell k : fg → 1y,

a 2-cell k′ : 1y → fg,
an equivalence 3-cell k′k → 1fg ,
an equivalence 3-cell kk′ → 11y ,

“f is an equivalence” means “f admits such an infinite hierarchy of witnesses”
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Coinductive equivalences

Definition

An n-cell f : x → y (with n ≥ 1) is an equivalence if there exist:

an n-cell g : y → x,

an equivalence (n+ 1)-cell gf → 1x, and

an equivalence (n+ 1)-cell fg → 1y.

To exhibit a 1-cell f : x → y as an equivalence, we must provide

a 1-cell g : y → x,

an equivalence 2-cell h : gf → 1x,
a 2-cell h′ : 1x → gf ,
an equivalence 3-cell h′h → 1gf , a 3-cell 1gf → h′h, equivalence 4-cells...
an equivalence 3-cell hh′ → 11x , a 3-cell 11x → hh′, equivalence 4-cells...

an equivalence 2-cell k : fg → 1y,
a 2-cell k′ : 1y → fg,
an equivalence 3-cell k′k → 1fg , a 3-cell 1fg → k′k, equivalence 4-cells...
an equivalence 3-cell kk′ → 11y , a 3-cell 11y → kk′, equivalence 4-cells...

“f is an equivalence” means “f admits such an infinite hierarchy of witnesses”
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Uniqueness and applications

Uniqueness part of Pasting Theorem

Let (X,TwkX
ξ−→ X) be a weak ω-category. If f//g in (TwkX)n and

αX(f) = αX(g) then there is an equivalence (n+ 1)-cell ξ(f) → ξ(g) in X.

Instances of this result yield:

h(gf) ∼ (hg)f, 1f ∼ f ∼ f1 etc.

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Using these facts, we can treat weak ω-categories just like strict ones.

..?
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Uniqueness and applications

Uniqueness part of Pasting Theorem

Let (X,TwkX
ξ−→ X) be a weak ω-category. If f//g in (TwkX)n and

αX(f) = αX(g) then there is an equivalence (n+ 1)-cell ξ(f) → ξ(g) in X.

Instances of this result yield:

h(gf) ∼ (hg)f, 1f ∼ f ∼ f1 etc.

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Using these facts, we can treat weak ω-categories just like strict ones...?
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That’s it!

Thank you!
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Identity and binary composition

Let (X,TwkX
ξ−→ X) be a weak ω-category and x ∈ Xn−1.

We can define 1x ∈ Xn by applying ξ to the lift in

∂Gn TwkX Twk1

Gn T stX T st1

(ηwk(x),ηwk(x))

αX α1

identity on ηst(x)

Similarly, given n-cells x
f−→ y

g−→ z, we can define gf ∈ Xn using

∂Gn TwkX

Gn T stX

(ηwk(x),ηwk(z))

αX

ηst(g)ηst(f)
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Uniqueness

Uniqueness part of Pasting Theorem

Let (X,TwkX
ξ−→ X) be a weak ω-category. If f//g in (TwkX)n and

αX(f) = αX(g) then there is an equivalence (n+ 1)-cell ξ(f) → ξ(g) in X.

Proof.

We proceed by coinduction. Obtain u : f → g as

∂Gn+1 TwkX

Gn+1 T stX

(f,g)

αX

identity on αX (f)

u

and similarly v : g → f . Then we have vu//1f and uv//1g in (TwkX)n+1, and
αX(vu) = 1αX (f) = αX(1f ) and αX(uv) = 1αX (g) = αX(1g).
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