Coinductive equivalences in algebraic weak $\omega\text{-}\mathsf{categories}$ j/w Soichiro Fujii and Keisuke Hoshino

Yuki Maehara¹

Kyushu University

The 66th Annual Meeting of the Australian Mathematical Society

¹Supported by JSPS KAKENHI Grant Number JP21K20329

Our weak ω -categories will be globular sets,

$$0 \xrightarrow[t]{s} 1 \xrightarrow[t]{s} 2 \xrightarrow[t]{s} \dots \text{ where } ss = ts \text{ and } st = tt,$$

$$0 \xrightarrow[t]{s} 1 \xrightarrow[t]{s} 2 \xrightarrow[t]{s} \dots \text{ where } ss = ts \text{ and } st = tt,$$

equipped with extra structure encoded by a monad T^{wk} .

$$0 \xrightarrow[t]{s} 1 \xrightarrow[t]{s} 2 \xrightarrow[t]{s} \dots \text{ where } ss = ts \text{ and } st = tt,$$

equipped with extra structure encoded by a monad T^{wk} .

Question

How should we define T^{wk} ?

$$0 \xrightarrow[t]{s} 1 \xrightarrow[t]{s} 2 \xrightarrow[t]{s} \dots \text{ where } ss = ts \text{ and } st = tt,$$

equipped with extra structure encoded by a monad T^{wk} .

Question

How should we define T^{wk} ?

We should have {strict ω -cats} \subset {weak ω -cats},

$$0 \xrightarrow[t]{s} 1 \xrightarrow[t]{s} 2 \xrightarrow[t]{s} \dots \text{ where } ss = ts \text{ and } st = tt,$$

equipped with extra structure encoded by a monad T^{wk} .

Question

How should we define T^{wk} ?

We should have {strict ω -cats} \subset {weak ω -cats}, or equivalently a monad map $\alpha : T^{wk} \rightarrow T^{st}$.

The terminal globular set $1 \mbox{ has:}$

The terminal globular set $1 \mbox{ has:}$

• a unique 0-cell x_0 ,

- a unique 0-cell x_0 ,
- a unique 1-cell $x_1: x_0 \to x_0$,

- a unique 0-cell x_0 ,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \rightarrow x_1, \ldots$

- a unique 0-cell x₀,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \rightarrow x_1, \ldots$
- In 1, everything is composable along everything.

- a unique 0-cell x₀,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \rightarrow x_1, \ldots$

In 1, everything is composable along everything. So

 $(T^{st}1)_n = \{n \text{-dimensional (globular) pasting schemes}\}.$

- a unique 0-cell x₀,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \rightarrow x_1, \ldots$

In 1, everything is composable along everything. So

 $(T^{st}1)_n = \{n \text{-dimensional (globular) pasting schemes}\}.$

e.g.

• $(T^{st}1)_1 = \{\bullet, \bullet \longrightarrow \bullet, \bullet \longrightarrow \bullet, \cdots \}$

- a unique 0-cell x₀,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \rightarrow x_1, \ldots$

In 1, everything is composable along everything. So

 $(T^{st}1)_n = \{n \text{-dimensional (globular) pasting schemes}\}.$

e.g.

- a unique 0-cell x₀,
- a unique 1-cell $x_1: x_0 \to x_0$,
- a unique 2-cell $x_2: x_1 \rightarrow x_1, \ldots$

In 1, everything is composable along everything. So

 $(T^{st}1)_n = \{n \text{-dimensional (globular) pasting schemes}\}.$

 $(T^{st}1)_n = \{n \text{-dimensional pasting schemes}\}$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow (\rightarrow \rightarrow)$ should be distinct cells in $T^{\le k}$ 1.

 $(T^{st}1)_n = \{n \text{-dimensional pasting schemes}\}$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow (\rightarrow \rightarrow)$ should be distinct cells in T^{wk} 1.

 $(T^{st}1)_n = \{n \text{-dimensional pasting schemes}\}\$ $(T^{wk}1)_n = \{n \text{-dimensional pasting instructions}\}\$ In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow (\rightarrow \rightarrow)$ should be distinct cells in $T^{wk}1$.

 $(T^{st}1)_n = \{n \text{-dimensional pasting schemes}\}\$ $(T^{wk}1)_n = \{n \text{-dimensional pasting instructions}\}\$

Existence part of Pasting Theorem

We ask that any commutative square

admit a chosen diagonal lift for $n \ge 1$.

Definition (Leinster)

 $T^{\mathrm{w}k}$ is the monad over $T^{\mathrm{s}t}$ such that

• $\alpha_1: T^{wk} 1 \to T^{st} 1$ satisfies the existence part of the Pasting Theorem, and

For a general globular set X, we want

 $T^{wk}X = \{ \text{cells in } T^{wk}1 \text{ decorated with cells in } X \}.$

Definition (Leinster)	
$T^{\mathrm{w}k}$ is the monad over	r $T^{\mathrm{s}t}$ such that
• $\alpha_1: T^{\mathrm{w}k} 1 \to T^{\mathrm{s}t} 1$ satisf	fies the existence part of the Pasting Theorem, and

For a general globular set $\boldsymbol{X},$ we want

 $T^{wk}X = \{ \text{cells in } T^{wk}1 \text{ decorated with cells in } X \}.$

Definition (Leinster)

 $T^{\mathrm{w}k}$ is the monad over $T^{\mathrm{s}t}$ such that

- $\alpha_1: T^{wk} 1 \rightarrow T^{st} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.

For a general globular set $\boldsymbol{X},$ we want

 $T^{wk}X = \{ \text{cells in } T^{wk}1 \text{ decorated with cells in } X \}.$

Definition (Leinster)

 $T^{\mathrm{w}k}$ is the initial monad over $T^{\mathrm{s}t}$ such that

- $\alpha_1: T^{wk} 1 \rightarrow T^{st} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.

For a general globular set $\boldsymbol{X},$ we want

 $T^{wk}X = \{ \text{cells in } T^{wk}1 \text{ decorated with cells in } X \}.$

Definition (Leinster)

 $T^{\mathrm{w}k}$ is the initial monad over $T^{\mathrm{s}t}$ such that

- $\alpha_1: T^{wk} 1 \rightarrow T^{st} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.

By a weak ω -category, we mean a $T^{\mathrm{w}k}$ -algebra.

Lifting cells

Note that α_X inherits the lifting property from α_1 :

So if we have $\xi: T^{wk}X \to X$, we can take any cell in $T^{st}X$, lift it to $T^{wk}X$, and interpret it in X.

So if we have $\xi : T^{wk}X \to X$, we can take any cell in $T^{st}X$, lift it to $T^{wk}X$, and interpret it in X. This gives us *e.g.* "identities" and "compositions."

So if we have $\xi: T^{wk}X \to X$, we can take any cell in $T^{st}X$, lift it to $T^{wk}X$, and interpret it in X. This gives us *e.g.* "identities" and "compositions."

But we can't lift equalities between cells;

So if we have $\xi : T^{wk}X \to X$, we can take any cell in $T^{st}X$, lift it to $T^{wk}X$, and interpret it in X. This gives us *e.g.* "identities" and "compositions."

But we can't lift equalities between cells; more precisely, the resulting lifts are only equivalences.

Finite dimensional case

In an n-category, an "equivalence k-cell" should be something that is:

Finite dimensional case

In an n-category, an "equivalence k-cell" should be something that is:

• strictly invertible for k = n,

Finite dimensional case

In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for k = n,
- invertible up to equivalence n-cell for k = n 1,

Finite dimensional case

In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for k = n,
- invertible up to equivalence n-cell for k = n 1,
- invertible up to equivalence (n-1)-cell for k = n-2,
- . . .

Finite dimensional case

In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for k = n,
- invertible up to equivalence n-cell for k = n 1,
- invertible up to equivalence (n-1)-cell for k = n-2,
- . . .

When $n = \omega$, we can't define it inductively because there is no top dimension;

Finite dimensional case

In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for k = n,
- invertible up to equivalence n-cell for k = n 1,
- invertible up to equivalence (n-1)-cell for k = n-2,

• . . .

When $n = \omega$, we can't define it inductively because there is no top dimension; but we can define it coinductively.

An *n*-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if

An *n*-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

• an *n*-cell
$$g: y \to x$$
,

An *n*-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an n-cell $g: y \to x$,
- an equivalence (n+1)-cell $gf \rightarrow 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

An *n*-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an *n*-cell $g: y \to x$,
- an equivalence (n+1)-cell $gf \rightarrow 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

To exhibit a 1-cell $f: x \to y$ as an equivalence, we must provide

An *n*-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an *n*-cell $g: y \to x$,
- an equivalence (n+1)-cell $gf \rightarrow 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

To exhibit a 1-cell $f: x \to y$ as an equivalence, we must provide

- a 1-cell $g: y \to x$,
- an equivalence 2-cell $h: gf \to 1_x$,

• an equivalence 2-cell $k: fg \to 1_y$,

An *n*-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an *n*-cell $g: y \to x$,
- an equivalence (n+1)-cell $gf \rightarrow 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

To exhibit a 1-cell $f: x \to y$ as an equivalence, we must provide

• an equivalence 2-cell $k: fg \to 1_y$,

An *n*-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an *n*-cell $g: y \to x$,
- an equivalence (n+1)-cell $gf \rightarrow 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

To exhibit a 1-cell $f: x \to y$ as an equivalence, we must provide

An *n*-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an *n*-cell $g: y \to x$,
- an equivalence (n+1)-cell $gf \rightarrow 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

To exhibit a 1-cell $f: x \to y$ as an equivalence, we must provide

- a 1-cell g : y → x,
 an equivalence 2-cell h : gf → 1x,
 a 2-cell h' : 1x → gf,
 an equivalence 3-cell h'h → 1gf, a 3-cell 1gf → h'h, equivalence 4-cells...
 an equivalence 3-cell hh' → 11x, a 3-cell 11x → hh', equivalence 4-cells...
 an equivalence 2-cell k : fg → 1y,
 a 2-cell k' : 1y → fg,
 - an equivalence 3-cell $k'k \rightarrow 1_{fg}$, a 3-cell $1_{fg} \rightarrow k'k$, equivalence 4-cells...
 - an equivalence 3-cell $kk' \to 1_{1y}$, a 3-cell $1_{1y} \to kk'$, equivalence 4-cells...

An *n*-cell $f: x \to y$ (with $n \ge 1$) is an equivalence if there exist:

- an *n*-cell $g: y \to x$,
- an equivalence (n+1)-cell $gf \rightarrow 1_x$, and
- an equivalence (n+1)-cell $fg \to 1_y$.

To exhibit a 1-cell $f: x \to y$ as an equivalence, we must provide

- a 1-cell g : y → x,
 an equivalence 2-cell h : gf → 1x,
 a 2-cell h' : 1x → gf,
 an equivalence 3-cell h'h → 1gf, a 3-cell 1gf → h'h, equivalence 4-cells...
 an equivalence 3-cell hh' → 11x, a 3-cell 11x → hh', equivalence 4-cells...
 an equivalence 2-cell k : fg → 1y,
 a 2-cell k': 1y → fg,
 an equivalence 3-cell k'k → 1fg, a 3-cell 1fg → k'k, equivalence 4-cells...
 - an equivalence 3-cell $kk' \to 1_{1y}$, a 3-cell $1_{1y} \to kk'$, equivalence 4-cells...

"f is an equivalence" means "f admits such an infinite hierarchy of witnesses"

Let $(X, T^{wk}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f /\!\!/ g$ in $(T^{wk}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Let $(X, T^{wk}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f/\!\!/g$ in $(T^{wk}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Instances of this result yield:

 $h(gf) \thicksim (hg)f, \quad 1f \thicksim f \thicksim f1 \quad \text{etc.}$

Let $(X, T^{wk}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f/\!\!/g$ in $(T^{wk}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Instances of this result yield:

$$h(gf) \sim (hg)f, \quad 1f \sim f \sim f1$$
 etc.

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω -category is closed under pastings.

Let $(X, T^{wk}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f/\!\!/g$ in $(T^{wk}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Instances of this result yield:

$$h(gf) \sim (hg)f, \quad 1f \sim f \sim f1$$
 etc.

For more non-trivial things, we need:

Theorem

The class of equivalence *n*-cells in a weak ω -category is closed under pastings.

Using these facts, we can treat weak ω -categories just like strict ones.

Let $(X, T^{wk}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f/\!\!/g$ in $(T^{wk}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Instances of this result yield:

$$h(gf) \sim (hg)f, \quad 1f \sim f \sim f1$$
 etc.

For more non-trivial things, we need:

Theorem

The class of equivalence *n*-cells in a weak ω -category is closed under pastings.

Using these facts, we can treat weak ω -categories just like strict ones...?

Thank you!

Identity and binary composition

Let $(X, T^{wk}X \xrightarrow{\xi} X)$ be a weak ω -category and $x \in X_{n-1}$. We can define $1_x \in X_n$ by applying ξ to the lift in

Similarly, given *n*-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $gf \in X_n$ using

Let $(X, T^{wk}X \xrightarrow{\xi} X)$ be a weak ω -category. If $f /\!\!/ g$ in $(T^{wk}X)_n$ and $\alpha_X(f) = \alpha_X(g)$ then there is an equivalence (n+1)-cell $\xi(f) \to \xi(g)$ in X.

Proof.

We proceed by coinduction. Obtain $u: f \rightarrow g$ as

and similarly $v: g \to f$. Then we have $vu/\!\!/ 1_f$ and $uv/\!\!/ 1_g$ in $(T^{wk}X)_{n+1}$, and $\alpha_X(vu) = 1_{\alpha_X(f)} = \alpha_X(1_f)$ and $\alpha_X(uv) = 1_{\alpha_X(g)} = \alpha_X(1_g)$.