Coinductive equivalences in algebraic weak ω-categories j/w Soichiro Fujii and Keisuke Hoshino

Yuki Maehara ${ }^{1}$

Kyushu University

The 66th Annual Meeting of the Australian Mathematical Society

[^0]
Weak ω-categories?

Weak ω-categories?

Our weak ω-categories will be globular sets,

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \underset{t}{s} 1 \underset{t}{\stackrel{s}{\rightrightarrows}} 2 \underset{t}{s} \cdots \quad \text { where } s s=t s \text { and } s t=t t,
$$

0 -cells	1-cells	2-cells	\cdots
\cdot	$\cdot \longrightarrow \cdot$	\cdots	\ldots

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \xrightarrow[t]{\stackrel{s}{\rightrightarrows}} 1 \underset{t}{\stackrel{s}{\leftrightarrows}} 2 \xrightarrow[t]{\stackrel{s}{\rightrightarrows}} \cdots \quad \text { where } s s=t s \text { and } s t=t t
$$

equipped with extra structure encoded by a monad $T^{\mathrm{w} k}$.

0 -cells	1-cells	2-cells	\cdots
\cdot	$\cdot \longrightarrow \cdot$	\cdots	\ldots

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \underset{t}{s} 1 \underset{t}{\stackrel{s}{\rightrightarrows}} 2 \underset{t}{s} \cdots \quad \text { where } s s=t s \text { and } s t=t t,
$$

equipped with extra structure encoded by a monad $T^{\mathrm{w} k}$.

Question

How should we define $T^{\text {wk }}$?

0 -cells	1-cells	2-cells	\cdots
\cdot	$\cdot \longrightarrow \cdot$	\cdots	\ldots

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \xrightarrow[t]{s} 1 \underset{t}{\stackrel{s}{\rightrightarrows}} 2 \underset{t}{s} \cdots \quad \text { where } s s=t s \text { and } s t=t t,
$$

equipped with extra structure encoded by a monad $T^{\mathrm{w} k}$.

Question

How should we define $T^{\mathrm{w} k}$?
We should have $\{$ strict ω-cats $\} \subset\{$ weak ω-cats $\}$,

0 -cells	1-cells	2-cells	\cdots
\cdot	$\cdot \longrightarrow \cdot$	\cdots	\ldots

Our weak ω-categories will be globular sets, i.e. presheaves over

$$
0 \xrightarrow[t]{s} 1 \underset{t}{\stackrel{s}{\rightrightarrows}} 2 \underset{t}{s} \cdots \quad \text { where } s s=t s \text { and } s t=t t,
$$

equipped with extra structure encoded by a monad $T^{\mathrm{w} k}$.

Question

How should we define $T^{\text {wk }}$?
We should have $\{$ strict ω-cats $\} \subset\{$ weak ω-cats $\}$, or equivalently a monad map $\alpha: T^{\mathrm{w} k} \rightarrow T^{\mathrm{s} t}$.

The terminal globular set 1 has:

The terminal globular set 1 has:

- a unique 0 -cell x_{0},

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1 -cell $x_{1}: x_{0} \rightarrow x_{0}$,

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1 -cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything.

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

e.g.

$$
\text { - }\left(T^{\text {st }} 1\right)_{1}=\{\bullet, \quad \bullet \longrightarrow \bullet, \quad \longrightarrow \bullet \bullet, \quad \cdots\}
$$

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

e.g.

- $\left(T^{\text {st }} 1\right)_{1}=\{\bullet, \quad \bullet \longrightarrow \bullet, \quad \longrightarrow \bullet \longrightarrow \bullet, \quad \cdots\}$
- $\left(T^{s t} 1\right)_{2}$ contains cells like

The terminal globular set 1 has:

- a unique 0 -cell x_{0},
- a unique 1-cell $x_{1}: x_{0} \rightarrow x_{0}$,
- a unique 2 -cell $x_{2}: x_{1} \rightarrow x_{1}, \ldots$

In 1, everything is composable along everything. So

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional (globular) pasting schemes }\} .
$$

e.g.

- $\left(T^{\text {st }} 1\right)_{1}=\{\bullet, \quad \bullet \longrightarrow \bullet, \quad \longrightarrow \bullet \longrightarrow, \quad \cdots\}$
- $\left(T^{s t} 1\right)_{2}$ contains cells like

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional pasting schemes }\}
$$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T^{\mathrm{w} k} 1$.

$$
\left(T^{s t} 1\right)_{n}=\{n \text {-dimensional pasting schemes }\}
$$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T^{\mathrm{w} k} 1$.

$$
\begin{aligned}
\left(T^{\mathrm{st}} 1\right)_{n} & =\{n \text {-dimensional pasting schemes }\} \\
\left(T^{\mathrm{wk}} 1\right)_{n} & =\{n \text {-dimensional pasting instructions }\}
\end{aligned}
$$

In the weak case, e.g. $(\rightarrow \rightarrow) \rightarrow$ and $\rightarrow(\rightarrow \rightarrow)$ should be distinct cells in $T^{\mathrm{w} k} 1$.

$$
\begin{aligned}
\left(T^{\mathrm{st}} 1\right)_{n} & =\{n \text {-dimensional pasting schemes }\} \\
\left(T^{\mathrm{wk}} 1\right)_{n} & =\{n \text {-dimensional pasting instructions }\}
\end{aligned}
$$

Existence part of Pasting Theorem

We ask that any commutative square

admit a chosen diagonal lift for $n \geq 1$.

Definition (Leinster)

$T^{\mathrm{wk} k}$ is the monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\text {st }} 1$ satisfies the existence part of the Pasting Theorem, and

For a general globular set X, we want

$$
T^{\mathrm{w} k} X=\left\{\text { cells in } T^{\mathrm{w} k} 1 \text { decorated with cells in } X\right\} .
$$

Definition (Leinster)

$T^{\mathrm{w} k}$ is the monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\text {st }} 1$ satisfies the existence part of the Pasting Theorem, and

For a general globular set X, we want

$$
T^{\mathrm{w} k} X=\left\{\text { cells in } T^{\mathrm{w} k} 1 \text { decorated with cells in } X\right\}
$$

Definition (Leinster)

$T^{\mathrm{w} k}$ is the monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\mathrm{st}} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

$$
\begin{gathered}
T^{\mathrm{w} k} X \longrightarrow T^{\mathrm{w} k} 1 \\
\alpha_{X} \downarrow \\
T^{\mathrm{st}} X \longrightarrow{ }^{\alpha_{1}} \\
\\
\hline
\end{gathered}
$$

is a pullback.

For a general globular set X, we want

$$
T^{\mathrm{w} k} X=\left\{\text { cells in } T^{\mathrm{w} k} 1 \text { decorated with cells in } X\right\}
$$

Definition (Leinster)

$T^{\mathrm{w} k}$ is the initial monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\mathrm{st}} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

$$
\begin{gathered}
T^{\mathrm{w} k} X \longrightarrow T^{\mathrm{w} k} 1 \\
{ }^{\alpha_{X}} \downarrow \\
\downarrow^{\alpha_{1}} \\
T^{\mathrm{st}} X \longrightarrow T^{\mathrm{st}} 1
\end{gathered}
$$

is a pullback.

For a general globular set X, we want

$$
T^{\mathrm{w} k} X=\left\{\text { cells in } T^{\mathrm{w} k} 1 \text { decorated with cells in } X\right\}
$$

Definition (Leinster)

$T^{\mathrm{w} k}$ is the initial monad over $T^{\text {st }}$ such that

- $\alpha_{1}: T^{\mathrm{wk}} 1 \rightarrow T^{\text {st }} 1$ satisfies the existence part of the Pasting Theorem, and
- for any globular set X,

is a pullback.
By a weak ω-category, we mean a $T^{\mathrm{w} k}$-algebra.

Lifting cells

Note that α_{X} inherits the lifting property from α_{1} :

Lifting cells

Note that α_{X} inherits the lifting property from α_{1} :

Lifting cells

Note that α_{X} inherits the lifting property from α_{1} :

So if we have $\xi: T^{\mathrm{w} k} X \rightarrow X$, we can take any cell in $T^{\text {st }} X$, lift it to $T^{\mathrm{w} k} X$, and interpret it in X.

Note that α_{X} inherits the lifting property from α_{1} :

So if we have $\xi: T^{\mathrm{w} k} X \rightarrow X$, we can take any cell in $T^{\text {st }} X$, lift it to $T^{\mathrm{w} k} X$, and interpret it in X. This gives us e.g. "identities" and "compositions."

Note that α_{X} inherits the lifting property from α_{1} :

So if we have $\xi: T^{\mathrm{w} k} X \rightarrow X$, we can take any cell in $T^{\text {st }} X$, lift it to $T^{\mathrm{w} k} X$, and interpret it in X. This gives us e.g. "identities" and "compositions."

But we can't lift equalities between cells;

Note that α_{X} inherits the lifting property from α_{1} :

So if we have $\xi: T^{\mathrm{w} k} X \rightarrow X$, we can take any cell in $T^{\text {st }} X$, lift it to $T^{\mathrm{w} k} X$, and interpret it in X. This gives us e.g. "identities" and "compositions."

But we can't lift equalities between cells; more precisely, the resulting lifts are only equivalences.

What should we mean by "equivalence" in this context?

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,
- invertible up to equivalence n-cell for $k=n-1$,

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,
- invertible up to equivalence n-cell for $k=n-1$,
- invertible up to equivalence $(n-1)$-cell for $k=n-2$,
- ...

What should we mean by "equivalence" in this context?
Finite dimensional case
In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,
- invertible up to equivalence n-cell for $k=n-1$,
- invertible up to equivalence $(n-1)$-cell for $k=n-2$,
- ...

When $n=\omega$, we can't define it inductively because there is no top dimension;

What should we mean by "equivalence" in this context?

Finite dimensional case

In an n-category, an "equivalence k-cell" should be something that is:

- strictly invertible for $k=n$,
- invertible up to equivalence n-cell for $k=n-1$,
- invertible up to equivalence $(n-1)$-cell for $k=n-2$,
- ...

When $n=\omega$, we can't define it inductively because there is no top dimension; but we can define it coinductively.

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$,
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$,
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$,
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$,
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,
- a 2-cell $k^{\prime}: 1_{y} \rightarrow f g$,
- an equivalence 3 -cell $k^{\prime} k \rightarrow 1_{f g}$,
- an equivalence 3 -cell $k k^{\prime} \rightarrow 1_{1_{y}}$,

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$, a 3 -cell $1_{g f} \rightarrow h^{\prime} h$, equivalence 4 -cells...
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$, a 3 -cell $1_{1_{x}} \rightarrow h h^{\prime}$, equivalence 4 -cells...
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,
- a 2-cell $k^{\prime}: 1_{y} \rightarrow f g$,
- an equivalence 3 -cell $k^{\prime} k \rightarrow 1_{f g}$, a 3 -cell $1_{f g} \rightarrow k^{\prime} k$, equivalence 4 -cells...
- an equivalence 3 -cell $k k^{\prime} \rightarrow 1_{1_{y}}$, a 3 -cell $1_{1_{y}} \rightarrow k k^{\prime}$, equivalence 4 -cells...

Coinductive equivalences

Definition

An n-cell $f: x \rightarrow y$ (with $n \geq 1$) is an equivalence if there exist:

- an n-cell $g: y \rightarrow x$,
- an equivalence $(n+1)$-cell $g f \rightarrow 1_{x}$, and
- an equivalence $(n+1)$-cell $f g \rightarrow 1_{y}$.

To exhibit a 1-cell $f: x \rightarrow y$ as an equivalence, we must provide

- a 1-cell $g: y \rightarrow x$,
- an equivalence 2 -cell $h: g f \rightarrow 1_{x}$,
- a 2-cell $h^{\prime}: 1_{x} \rightarrow g f$,
- an equivalence 3 -cell $h^{\prime} h \rightarrow 1_{g f}$, a 3 -cell $1_{g f} \rightarrow h^{\prime} h$, equivalence 4 -cells...
- an equivalence 3 -cell $h h^{\prime} \rightarrow 1_{1_{x}}$, a 3 -cell $1_{1_{x}} \rightarrow h h^{\prime}$, equivalence 4-cells...
- an equivalence 2 -cell $k: f g \rightarrow 1_{y}$,
- a 2 -cell $k^{\prime}: 1_{y} \rightarrow f g$,
- an equivalence 3 -cell $k^{\prime} k \rightarrow 1_{f g}$, a 3 -cell $1_{f g} \rightarrow k^{\prime} k$, equivalence 4 -cells...
- an equivalence 3 -cell $k k^{\prime} \rightarrow 1_{1_{y}}$, a 3 -cell $1_{1_{y}} \rightarrow k k^{\prime}$, equivalence 4 -cells...
" f is an equivalence" means " f admits such an infinite hierarchy of witnesses"

Uniqueness and applications

Uniqueness part of Pasting Theorem
Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Uniqueness and applications

Uniqueness part of Pasting Theorem

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

Uniqueness part of Pasting Theorem

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.

Uniqueness part of Pasting Theorem

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.
Using these facts, we can treat weak ω-categories just like strict ones.

Uniqueness part of Pasting Theorem

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Instances of this result yield:

$$
h(g f) \sim(h g) f, \quad 1 f \sim f \sim f 1 \quad \text { etc. }
$$

For more non-trivial things, we need:

Theorem

The class of equivalence n-cells in a weak ω-category is closed under pastings.
Using these facts, we can treat weak ω-categories just like strict ones...?

Thank you!

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category and $x \in X_{n-1}$.
We can define $1_{x} \in X_{n}$ by applying ξ to the lift in

Similarly, given n-cells $x \xrightarrow{f} y \xrightarrow{g} z$, we can define $g f \in X_{n}$ using

Uniqueness part of Pasting Theorem

Let $\left(X, T^{\mathrm{w} k} X \xrightarrow{\xi} X\right)$ be a weak ω-category. If $f / / g$ in $\left(T^{\mathrm{w} k} X\right)_{n}$ and $\alpha_{X}(f)=\alpha_{X}(g)$ then there is an equivalence $(n+1)$-cell $\xi(f) \rightarrow \xi(g)$ in X.

Proof.

We proceed by coinduction. Obtain $u: f \rightarrow g$ as

and similarly $v: g \rightarrow f$. Then we have $v u / / 1_{f}$ and $u v / / 1_{g}$ in $\left(T^{\mathrm{w} k} X\right)_{n+1}$, and $\alpha_{X}(v u)=1_{\alpha_{X}(f)}=\alpha_{X}\left(1_{f}\right)$ and $\alpha_{X}(u v)=1_{\alpha_{X}(g)}=\alpha_{X}\left(1_{g}\right)$.

[^0]: ${ }^{1}$ Supported by JSPS KAKENHI Grant Number JP21K20329

