Equivalence of cubical and simplicial approaches to weak $\omega\text{-categories}$

Yuki Maehara

j/w Tim Campion, Brandon Doherty, Chris Kapulkin

Institute of Mathematics for Industry, Kyushu University

ALGI 2021

	Shape	Compositions
0-cells	•	none
1-cells	$\bullet \longrightarrow \bullet$	$\bullet \longrightarrow \bullet \longrightarrow \bullet$

• category theory itself

- category theory itself
- homotopy theory

(Homotopy Hypothesis etc.)

- category theory itself
- homotopy theory

(Homotopy Hypothesis etc.)

non-abelian cohomology

(as coefficient objects; The algebra of oriented simplexes, Street)

- category theory itself
- homotopy theory

(Homotopy Hypothesis etc.)

non-abelian cohomology

(as coefficient objects; The algebra of oriented simplexes, Street)

• topological quantum field theory

- category theory itself
- homotopy theory

(Homotopy Hypothesis etc.)

non-abelian cohomology

(as coefficient objects; The algebra of oriented simplexes, Street)

- topological quantum field theory
- higher-dimensional rewriting theory

(Higher dimensional word problems with applications to equational logic, Burroni)

- category theory itself
- homotopy theory

(Homotopy Hypothesis etc.)

non-abelian cohomology

(as coefficient objects; The algebra of oriented simplexes, Street)

- topological quantum field theory
- higher-dimensional rewriting theory

(Higher dimensional word problems with applications to equational logic, Burroni)

modelling concurrency

(Modeling concurrency with geometry, Pratt)

We want to deal with weak ω -categories

We want to deal with weak ω -categories

so e.g.

 $(hg)f\simeq h(gf)$

 $(hg)f\simeq h(gf)$

 $(hg)f \simeq h(gf)$ and $F(gf) \simeq (Fg)(Ff)$.

 $(hg)f \simeq h(gf)$ and $F(gf) \simeq (Fg)(Ff)$.

But then we must worry about coherence

$$(hg)f\simeq h(gf)$$
 and $F(gf)\simeq (Fg)(Ff).$

But then we must worry about coherence, e.g.

$$(hg)f\simeq h(gf)$$
 and $F(gf)\simeq (Fg)(Ff).$

But then we must worry about coherence, e.g.

Idea

Define structures that can only "see" equivalences, and not equalities, between cells.

$$(hg)f\simeq h(gf)$$
 and $F(gf)\simeq (Fg)(Ff).$

But then we must worry about coherence, e.g.

Idea

Define structures that can only "see" equivalences, and not equalities, between cells.

To realise this, simplicial, cubical, etc. are more convenient than globular.

	Shape	Compositions
0-cells	•	none
1-cells	$\bullet \longrightarrow \bullet$	$\bullet \longrightarrow \bullet \longrightarrow \bullet$

	Shape	Compositions
0-cells	•	none
1-cells	$\bullet \longrightarrow \bullet$	$\bullet \longrightarrow \bullet \longrightarrow \bullet$
2-cells		\bigvee_{1}

	Shape	Compositions
0-cells	•	none
1-cells	$\bullet \longrightarrow \bullet$	$\bullet \longrightarrow \bullet \longrightarrow \bullet$
2-cells		$\begin{array}{c} \downarrow \\ \downarrow $
÷		
<i>n</i> -cells	<i>n</i> -dimensional simplex	n ways

	Shape	Compositions
0-cells	•	none
1-cells	$ullet$ \longrightarrow $ullet$	$\bullet \longrightarrow \bullet \longrightarrow \bullet$
2-cells	$\begin{array}{c} \bullet \longrightarrow \bullet \\ \downarrow \nearrow \downarrow \\ \bullet \longrightarrow \bullet \end{array}$	$\begin{array}{c} \bullet \longrightarrow \bullet \longrightarrow \bullet \\ \text{hor.} & \downarrow \not \nearrow \downarrow \not \nearrow \downarrow \\ \bullet \longrightarrow \bullet \bullet \\ & \bullet \longrightarrow \bullet \\ & \downarrow \not \nearrow \downarrow \\ \bullet \longrightarrow \bullet \\ \bullet \longrightarrow \bullet \end{array}$
:	· · · · · · · · · · · · · · · · · · ·	
<i>n</i> -cells	<i>n</i> -dimensional cube	n ways

Theorem (Al-Agl-Brown-Steiner, Steiner, Verity)

 $\{ \textbf{globular strict } \omega \text{-categories} \} \simeq \{ \textbf{simplicial strict } \omega \text{-categories} \} \\ \simeq \{ \textbf{cubical strict } \omega \text{-categories} \}$

Theorem (Al-Agl-Brown-Steiner, Steiner, Verity)

 $\{ \begin{array}{l} \textit{globular strict } \omega \textit{-categories} \} \simeq \{ \begin{array}{l} \textit{simplicial strict } \omega \textit{-categories} \} \\ \simeq \{ \begin{array}{l} \textit{cubical strict } \omega \textit{-categories} \} \end{array} \\ \end{array}$

Q2: Why are weak things easier to deal with simplicially/cubically?

Theorem (Al-Agl-Brown-Steiner, Steiner, Verity)

 $\{ \begin{array}{l} \textit{globular strict } \omega \textit{-categories} \} \simeq \{ \begin{array}{l} \textit{simplicial strict } \omega \textit{-categories} \} \\ \simeq \{ \begin{array}{l} \textit{cubical strict } \omega \textit{-categories} \} \end{array} \\ \end{array}$

Q2: Why are weak things easier to deal with simplicially/cubically?

A2: We can encode compositions of *n*-cells using identity (n + 1)-cells,

Theorem (AI-AgI-Brown-Steiner, Steiner, Verity)

 $\{ \begin{array}{l} \textit{globular strict } \omega \textit{-categories} \} \simeq \{ \begin{array}{l} \textit{simplicial strict } \omega \textit{-categories} \} \\ \simeq \{ \begin{array}{l} \textit{cubical strict } \omega \textit{-categories} \} \end{array} \\ \end{array}$

Q2: Why are weak things easier to deal with simplicially/cubically?

A2: We can encode compositions of *n*-cells using identity (n + 1)-cells,

e.g. any composable pair f, g of 1-cells

Theorem (Al-Agl-Brown-Steiner, Steiner, Verity)

 $\{ \begin{array}{l} \textit{globular strict } \omega \textit{-categories} \} \simeq \{ \begin{array}{l} \textit{simplicial strict } \omega \textit{-categories} \} \\ \simeq \{ \begin{array}{l} \textit{cubical strict } \omega \textit{-categories} \} \end{array} \\ \end{array}$

Q2: Why are weak things easier to deal with simplicially/cubically?

A2: We can encode compositions of *n*-cells using identity (n + 1)-cells,

 $\textit{e.g.}\xspace$ any composable pair f,g of 1-cells can be completed to

Theorem (Al-Agl-Brown-Steiner, Steiner, Verity)

 $\{ globular \text{ strict } \omega\text{-categories} \} \simeq \{ simplicial \text{ strict } \omega\text{-categories} \} \\ \simeq \{ cubical \text{ strict } \omega\text{-categories} \}$

- Q2: Why are weak things easier to deal with simplicially/cubically?
- A2: We can encode compositions of *n*-cells using identity (n + 1)-cells, and "replace" them by suitable equivalences.

 $\textit{e.g.}\xspace$ any composable pair f,g of 1-cells can be completed to

The join of $\mathcal{C}, \mathcal{D} \in \underline{\mathrm{Cat}} \text{ is } \mathcal{C} \star \mathcal{D}$

The join of $\mathcal{C}, \mathcal{D} \in \underline{\operatorname{Cat}}$ is $\mathcal{C} \star \mathcal{D}$ given by $\operatorname{ob}(\mathcal{C} \star \mathcal{D}) = \operatorname{ob} \mathcal{C} \amalg \operatorname{ob} \mathcal{D}$ and

The join of $\mathcal{C}, \mathcal{D} \in \underline{\operatorname{Cat}}$ is $\mathcal{C} \star \mathcal{D}$ given by $\operatorname{ob}(\mathcal{C} \star \mathcal{D}) = \operatorname{ob} \mathcal{C} \amalg \operatorname{ob} \mathcal{D}$ and

$$(\mathcal{C} \star \mathcal{D})(x, y) = \begin{cases} \mathcal{C}(x, y), & x, y \in \mathcal{C} \\ \mathcal{D}(x, y), & x, y \in \mathcal{D} \\ \{*\}, & x \in \mathcal{C}, y \in \mathcal{D} \\ \varnothing, & x \in \mathcal{D}, y \in \mathcal{C} \end{cases}$$

The join of $\mathcal{C}, \mathcal{D} \in \underline{\operatorname{Cat}}$ is $\mathcal{C} \star \mathcal{D}$ given by $\operatorname{ob}(\mathcal{C} \star \mathcal{D}) = \operatorname{ob} \mathcal{C} \amalg \operatorname{ob} \mathcal{D}$ and

$$(\mathcal{C} \star \mathcal{D})(x, y) = \begin{cases} \mathcal{C}(x, y), & x, y \in \mathcal{C} \\ \mathcal{D}(x, y), & x, y \in \mathcal{D} \\ \{*\}, & x \in \mathcal{C}, y \in \mathcal{D} \\ \varnothing, & x \in \mathcal{D}, y \in \mathcal{C} \end{cases}$$

The join of $\mathcal{C}, \mathcal{D} \in \underline{\operatorname{Cat}}$ is $\mathcal{C} \star \mathcal{D}$ given by $\operatorname{ob}(\mathcal{C} \star \mathcal{D}) = \operatorname{ob} \mathcal{C} \amalg \operatorname{ob} \mathcal{D}$ and

$$(\mathcal{C} \star \mathcal{D})(x, y) = \begin{cases} \mathcal{C}(x, y), & x, y \in \mathcal{C} \\ \mathcal{D}(x, y), & x, y \in \mathcal{D} \\ \{*\}, & x \in \mathcal{C}, y \in \mathcal{D} \\ \varnothing, & x \in \mathcal{D}, y \in \mathcal{C} \end{cases}$$

join of $\omega\text{-categories}$

The join of $\mathcal{C}, \mathcal{D} \in \underline{\operatorname{Cat}}$ is $\mathcal{C} \star \mathcal{D}$ given by $\operatorname{ob}(\mathcal{C} \star \mathcal{D}) = \operatorname{ob} \mathcal{C} \amalg \operatorname{ob} \mathcal{D}$ and

$$(\mathcal{C} \star \mathcal{D})(x, y) = \begin{cases} \mathcal{C}(x, y), & x, y \in \mathcal{C} \\ \mathcal{D}(x, y), & x, y \in \mathcal{D} \\ \{*\}, & x \in \mathcal{C}, y \in \mathcal{D} \\ \varnothing, & x \in \mathcal{D}, y \in \mathcal{C} \end{cases}$$

join of $\omega\text{-categories}$

The join of $\mathcal{C}, \mathcal{D} \in \underline{\operatorname{Cat}}$ is $\mathcal{C} \star \mathcal{D}$ given by $\operatorname{ob}(\mathcal{C} \star \mathcal{D}) = \operatorname{ob} \mathcal{C} \amalg \operatorname{ob} \mathcal{D}$ and

$$(\mathcal{C} \star \mathcal{D})(x, y) = \begin{cases} \mathcal{C}(x, y), & x, y \in \mathcal{C} \\ \mathcal{D}(x, y), & x, y \in \mathcal{D} \\ \{*\}, & x \in \mathcal{C}, y \in \mathcal{D} \\ \varnothing, & x \in \mathcal{D}, y \in \mathcal{C} \end{cases}$$

join of ω -categories

$$[m] \star [n] = [m+n+1].$$

The join of $\mathcal{C}, \mathcal{D} \in \underline{\operatorname{Cat}}$ is $\mathcal{C} \star \mathcal{D}$ given by $\operatorname{ob}(\mathcal{C} \star \mathcal{D}) = \operatorname{ob} \mathcal{C} \amalg \operatorname{ob} \mathcal{D}$ and

$$(\mathcal{C} \star \mathcal{D})(x, y) = \begin{cases} \mathcal{C}(x, y), & x, y \in \mathcal{C} \\ \mathcal{D}(x, y), & x, y \in \mathcal{D} \\ \{*\}, & x \in \mathcal{C}, y \in \mathcal{D} \\ \varnothing, & x \in \mathcal{D}, y \in \mathcal{C} \end{cases}$$

Can model join of ω -categories using join of simplicial sets which extends

$$[m]\star[n] = [m+n+1].$$

The Gray tensor product on $2\text{-}\underline{Cat}$

The Gray tensor product on $2-\underline{Cat}$ is a tensor product such that

The Gray tensor product on $2-\underline{Cat}$ is a tensor product such that

The Gray tensor product on 2-Cat is a tensor product such that

The Gray tensor product on 2-Cat is a tensor product such that

Gray tensor product of ω -categories

The Gray tensor product on 2-Cat is a tensor product such that

Gray tensor product of ω -categories

 $m\text{-}\mathsf{cube}\otimes n\text{-}\mathsf{cube}=(m+n)\text{-}\mathsf{cube}.$

The Gray tensor product on 2-Cat is a tensor product such that

Can model Gray tensor product of ω -categories using geometric product of cubical sets which extends

 $m\text{-}\mathsf{cube}\otimes n\text{-}\mathsf{cube}=(m+n)\text{-}\mathsf{cube}.$

The Gray tensor product on 2-Cat is a tensor product such that

Can model (both lax and pseudo) Gray tensor product of ω -categories using geometric product of cubical sets which extends

 $m\text{-}\mathsf{cube}\otimes n\text{-}\mathsf{cube}=(m+n)\text{-}\mathsf{cube}.$

There is a *Quillen equivalence* between:

There is a Quillen equivalence between:

• Verity's complicial model structure on marked simplicial sets; and

There is a Quillen equivalence between:

- Verity's complicial model structure on marked simplicial sets; and
- comical model structure on marked cubical sets.

There is a Quillen equivalence between:

- Verity's complicial model structure on marked simplicial sets; and
- comical model structure on marked cubical sets.

Moreover this equivalence preserves (both lax and pseudo) Gray tensor product.

There is a Quillen equivalence between:

- Verity's complicial model structure on marked simplicial sets; and
- comical model structure on marked cubical sets.

Moreover this equivalence preserves (both lax and pseudo) Gray tensor product.

In other words, the weak $\omega\text{-categories}$ of

- simplicial weak ω -categories (complicial sets); and
- cubical weak ω-categories (comical sets)

are suitably equivalent.

There is a Quillen equivalence between:

- Verity's complicial model structure on marked simplicial sets; and
- comical model structure on marked cubical sets.

Moreover this equivalence preserves (both lax and pseudo) Gray tensor product.

In other words, the weak $\omega\text{-categories}$ of

- simplicial weak ω-categories (complicial sets); and
- cubical weak ω-categories (comical sets)

are suitably equivalent.

Preprints available at:

- [CKM] A cubical model for (∞, n) -categories (arXiv:2005.07603)
- [DKM] Equivalence of cubical and simplicial approaches to (∞, n) -categories (arXiv:2106.09428)