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Globular ω-categories

Shape Compositions

0-cells none

1-cells

2-cells

hor.

vert.

...
...

...
n-cells n-dimensional globe n ways
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Why ω-categories?

Motivations coming from...

category theory itself

homotopy theory
(Homotopy Hypothesis etc.)

non-abelian cohomology
(as coefficient objects; The algebra of oriented simplexes, Street)

topological quantum field theory

higher-dimensional rewriting theory
(Higher dimensional word problems with applications to equational logic, Burroni)

modelling concurrency
(Modeling concurrency with geometry, Pratt)
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Making things weak

We want to deal with weak ω-categories

and weak ω-functors so e.g.

(hg)f ' h(gf)

and F (gf) ' (Fg)(Ff).

But then we must worry about coherence, e.g.

((kh)g)f

(kh)(gf)

k(h(gf))

(k(hg))f k((hg)f)
αk,hg,f

αk,h,gf kαh,g,f

αkh,g,f αk,h,gf

∼=

Idea

Define structures that can only “see” equivalences, and not equalities, between
cells.

To realise this, simplicial, cubical, etc. are more convenient than globular.
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Simplicial ω-categories

Shape Compositions

0-cells none

1-cells

2-cells

∨1

∨2

...
...

...
n-cells n-dimensional simplex n ways
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Cubical ω-categories

Shape Compositions

0-cells none

1-cells

2-cells

hor.

vert.

...
...

...
n-cells n-dimensional cube n ways
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Simplicial weak ω-categories

Q1: But aren’t they different things?

Theorem (Al-Agl-Brown-Steiner, Steiner,Verity)

{globular strict ω-categories} ' {simplicial strict ω-categories}
' {cubical strict ω-categories}

Q2: Why are weak things easier to deal with simplicially/cubically?

A2: We can encode compositions of n-cells using identity (n+ 1)-cells,
and “replace” them by suitable equivalences.

e.g. any composable pair f, g of 1-cells can be completed to

f g
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Simplicial weak ω-categories
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Join

Recall

The join of C,D ∈ Cat is C ?D

given by ob(C ?D) = ob C q obD and

(C ?D)(x, y) =


C(x, y), x, y ∈ C
D(x, y), x, y ∈ D
{∗}, x ∈ C, y ∈ D
∅, x ∈ D, y ∈ C

C D

Can model join of ω-categories using join of simplicial sets which extends

[m] ? [n] = [m+ n+ 1].
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Gray tensor product

Recall

The Gray tensor product on 2-Cat

is a tensor product such that

x x′ in C

y y′ in D
g

f
  

(x, y) (x′, y)

(x, y′) (x′, y′)

(f, y)

(f, y′)

(x, g) (x′, g)

=⇒

subject to


id

id

⇒ =

id

id

=

⇒

⇒ =

⇒

⇒

⇒ ⇒ = ⇒


etc.

Can model (both lax and pseudo) Gray tensor product of ω-categories using
geometric product of cubical sets which extends

m-cube⊗ n-cube = (m+ n)-cube.
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Main result

Theorem (Campion-Kapulkin-M., Doherty-Kapulkin-M.)

There is a Quillen equivalence between:

Verity’s complicial model structure on marked simplicial sets; and

comical model structure on marked cubical sets.

Moreover this equivalence preserves (both lax and pseudo) Gray tensor product.

In other words, the weak ω-categories of

simplicial weak ω-categories (complicial sets); and

cubical weak ω-categories (comical sets)

are suitably equivalent.

Preprints available at:

[CKM] A cubical model for (∞, n)-categories (arXiv:2005.07603)

[DKM] Equivalence of cubical and simplicial approaches to
(∞, n)-categories (arXiv:2106.09428)
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