AUGMENTED SIMPLICIAL SETS AS M-SETS

YUKI MAEHARA

ABSTRACT. We show that the category of augmented simplicial sets is comonadic over the category of M-sets, where M is the monoid of *eventually consecutive* endomorphisms on the ordinal ω .

1. INTRODUCTION

The purpose of this short note is exhibit the category $\underline{sSet}_{+} = [\Delta_{+}^{op}, \underline{Set}]$ of augmented simplicial sets as being comonadic over the category of *M*-sets for a suitable monoid *M*.

The intuition behind this result is as follows. The category Δ_+ consists of the standard *n*-simplices for various *n*. For any $m \leq n$, the *m*-simplex [m] may be realised as an initial segment of the *n*-simplex [n]. Thus if we have access to the "standard ω -simplex", then we may expect the monoid of endomorphisms on this object to subsume the category Δ_+ in some sense. Indeed, the monoid *M* will be defined as comprising of certain endomorphisms on the ordinal $\omega = \{0 < 1 < ...\}$.

The adjunction between \underline{sSet}_+ and M- \underline{Set} described below may be informally thought of as follows. The left adjoint $U : \underline{sSet}_+ \to M$ - \underline{Set} "pads out" all (finitedimensional) simplices in a given augmented simplicial set to ω -dimensional simplices. The right adjoint R : M- $\underline{Set} \to \underline{sSet}_+$ sends each M-set X to the augmented simplicial set RX whose n-simplices are precisely those $x \in X$ whose "tail" past nis a "padding". A coalgebra structure for the induced comonad then corresponds to assigning a finite "actual" dimension to each ω -simplex in a coherent manner.

2. Augmented simplicial sets

Let Δ_+ denote the category of finite ordinals

$$[n] = \{0 < \dots < n\}$$

and order-preserving maps. It is well known that this category may be presented by the generating morphisms

$$\delta_k^n : [n-1] \to [n], \quad \sigma_k^n : [n+1] \to [n]$$

for $0 \le k \le n$ subject to the cosimplicial identities.

We will write \underline{sSet}_+ for the category $[\Delta^{op}_+, \underline{Set}]$ of augmented simplicial sets. For any $A \in \underline{sSet}_+$, $a \in A_n \stackrel{\text{def}}{=} A([n])$ and $\alpha : [m] \to [n]$ in Δ_+ , we write $a \cdot \alpha$ to mean $A(\alpha)(a) \in A_m$.

3. The monoid M

We will write ω for the ordinal $\omega = \{0 < 1 < ... \}$.

Definition 3.1. An order-preserving function $\mu : \omega \to \omega$ is called *eventually consecutive* if there exists $n \in \omega$ such that $\mu(i) = \mu(n) + (i - n)$ for all $i \ge n$.

Example. For $k \in \mathbb{N}$, let $\delta_k, \sigma_k : \omega \to \omega$ be the functions given by

$$\delta_k(i) = \begin{cases} i, & i < k\\ i+1, & i \ge k \end{cases}$$

and

$$\sigma_k(i) = \begin{cases} i, & i \le k, \\ i-1, & i > k. \end{cases}$$

These functions are eventually consecutive for any k.

Definition 3.2. Let M denote the monoid (under composition) of all eventually consecutive, order-preserving functions $\mu : \omega \to \omega$.

Definition/Warning 3.3. We will write "max" for the function that takes a finite initial segment [n] of ω and returns the value n. In particular, max $\emptyset = -1$.

Definition 3.4. For any $\mu \in M$ and $n \in \omega$, we denote by $\mu|_n$ the restriction

$$\mu|_n:[m]\to [n]$$

of μ where $m = \max(\mu^{-1}[n])$. We write $\mu \sim_n \nu$ if $\mu|_n = \nu|_n$ holds for $\mu, \nu \in M$.

The following propositions are straightforward to verify.

Proposition 3.5. The equality $(\mu\nu)|_n = \mu|_n\nu|_m$ holds for any $\mu, \nu \in M$ and $n \in \omega$ where $m = \max(\mu^{-1}[n])$.

Proposition 3.6. For each $n \in \omega$, the binary relation \sim_n on M is an equivalence relation. Moreover, $\mu \sim_n \mu'$ implies $\mu \nu \sim_n \mu' \nu$ for any $\mu, \mu', \nu \in M$.

Definition 3.7. We will denote the \sim_n -class containing $\mu \in M$ by $[\mu]_n$.

4. Adjunction between \underline{sSet}_+ and $M-\underline{Set}$

Proposition 3.6 implies that, for each $n \in \omega$, the quotient M/\sim_n admits a right M-action given by $[\mu]_n \cdot \nu = [\mu\nu]_n$. We will extend the assignation $n \mapsto M/\sim_n$ to a functor $\Delta_+ \to M$ -<u>Set</u> $\stackrel{\text{def}}{=} [M^{\text{op}}, \underline{\text{Set}}]$ (where M is regarded as a one-object category).

Definition 4.1. We denote by $(\overrightarrow{-}) : \Delta_+ \to M$ the functor that sends each simplicial operator $\alpha : [m] \to [n]$ to the function $\overrightarrow{\alpha} : \omega \to \omega$ given by

$$\vec{\alpha}(i) = \begin{cases} \alpha(i), & i \le m, \\ n + (i - m), & i > m. \end{cases}$$

Example. We have $\overline{\delta_k^n} = \delta_k$ and $\overline{\sigma_k^n} = \sigma_k$ for any $0 \le k \le n$.

It is easy to check that the operations $(-)|_n$ and $\overrightarrow{(-)}$ behave like mutual inverses in the following sense.

Proposition 4.2. For any $\alpha : [m] \to [n]$ in Δ_+ , we have $\overrightarrow{\alpha}|_n = \alpha$. For any $\mu \in M$ and $n \in \omega$, we have $\overrightarrow{\mu}|_n \sim_n \mu$; equivalently, $\left[\overrightarrow{\mu}|_n\right]_n = [\mu]_n$.

Proposition 4.3. For any $\alpha : [m] \to [n]$ in Δ_+ , post-composing with $\overrightarrow{\alpha} : \omega \to \omega$ induces a morphism $M/\sim_m \to M/\sim_n$ in M-Set. Moreover, this assignation defines a functor $F : \Delta_+ \to M$ -Set.

Proof. Let $\mu, \nu \in M$ and suppose $\mu|_m = \nu|_m$. Then we have

$$(\overrightarrow{\alpha}\mu)|_n = \overrightarrow{\alpha}|_n\mu|_m = \overrightarrow{\alpha}|_n\nu|_m = (\overrightarrow{\alpha}\nu)|_n$$

by Proposition 3.5. This shows that $\overrightarrow{\alpha}$ induces a function $M/\sim_m \rightarrow M/\sim_n$. The rest of the statement is straightforward to check.

The functor F induces an adjunction via the Kan construction. We will give an explicit description of the resulting adjunction $U \dashv R$.

Definition 4.4. For any $A \in \underline{sSet}_+$, let $UA \in M$ -<u>Set</u> be the coproduct $\coprod_{m \geq -1} A_m$ equipped with the right *M*-action $a \cdot \mu \stackrel{\text{def}}{=} a \cdot \mu|_m$ for $a \in A_m$. This extends to a functor $U : \underline{sSet}_+ \to M$ -<u>Set</u> in the obvious way.

Remark. That UA is indeed an *M*-set follows from Proposition 3.5 and the fact that $\mathrm{id}_{\omega}|_{m} = \mathrm{id}_{[m]}$ holds for any $m \geq -1$.

Proposition 4.5. The functor U is the left Kan extension of F along the Yoneda embedding.

Note that the square

commutes by our definition of U, where V and W are induced by the discrete inclusions $ob \Delta_+ \hookrightarrow \Delta_+$ and $ob M \hookrightarrow M$ respectively, and \coprod is the coproduct functor.

Proof. Since V and \coprod preserve colimits and W reflects them, it follows from the commutativity of (1) that U preserves them. So it suffices to exhibit a natural isomorphism $U(\Delta_+^n) \cong F[n]$.

Fix $n \ge -1$, and let

$$\iota_n: \prod_{m \ge -1} \Delta_+([m], [n]) \to M/\sim_n$$

be the function given by sending $\alpha : [m] \to [n]$ to $[\overrightarrow{\alpha}]_n$. Then for any $\mu \in M$, we have

$$\begin{split} \iota_n(\alpha) \cdot \mu &= [\overrightarrow{\alpha}]_n \cdot \mu & \text{definition of } \iota_n \\ &= [\overrightarrow{\alpha}\mu]_n & M\text{-action on } M/\sim_n \\ &= \left[(\overrightarrow{\alpha}\mu) |_n \right]_n & \text{Proposition 4.2} \\ &= \left[\overrightarrow{\alpha} |_n \mu |_m \right]_n & \text{Proposition 3.5} \\ &= \left[\overrightarrow{\alpha} (\mu |_m) \right]_n & \text{Proposition 4.2} \\ &= \left[\overrightarrow{\alpha} \cdot \mu \right]_n & M\text{-action on } U(\Delta_+^n) \\ &= \iota_n(\alpha \cdot \mu) & \text{definition of } \iota_n. \end{split}$$

Thus ι_n is a morphism in M-<u>Set</u>.

YUKI MAEHARA

This map ι_n is a surjection since $[\mu]_n = \left[\overrightarrow{\mu|_n}\right]_n = \iota_n(\mu|_n)$ holds for any $\mu \in M$ by Proposition 4.2.

To see that ι_n is an injection, let $\alpha : [m] \to [n]$ in Δ_+ . Observe that $\alpha = \mu|_n$ holds for any $\mu \in M$ with $\overrightarrow{\alpha} \sim_n \mu$. Thus α may be recovered from $\iota_n(\alpha) = [\overrightarrow{\alpha}]_n$ by choosing any representative and applying $(-)|_n$.

The naturality of ι_n in [n] is easy to check, and this completes the proof. \Box

Definition 4.6. Let $X \in M$ -Set, $x \in X$ and $n \in \omega$. We write $\dim(x) \leq n$ to mean that $x \cdot \mu = x \cdot \nu$ holds for any $\mu, \nu \in M$ with $\mu \sim_n \nu$.

Definition 4.7. For any $X \in M$ -<u>Set</u>, let RX denote the augmented simplicial set given by

 $(RX)_n = \{(x,n) : x \in X, \dim(x) \le n\}$

for $n \ge -1$ and $(x, n) \cdot \alpha = (x \cdot \overrightarrow{\alpha}, m)$ for $\alpha : [m] \to [n]$ in Δ_+ . This extends to a functor $R: M \cdot \underline{\operatorname{Set}} \to \underline{\operatorname{sSet}}_+$ in the obvious way.

Proposition 4.8. There exist bijections

$$M-\underline{\operatorname{Set}}(F[n],X) \cong (RX)_n$$

natural in $[n] \in \Delta_+$ and $X \in M$ -Set.

Proof. Note that a map $f: F[n] = M/\sim_m \to X$ in M-Set is completely determined by its value on $[id]_n$. More precisely, if $f([id]_n) = x$ then

$$f([\mu]_n) = f([id]_n \cdot \mu) \qquad M \text{-action on } M/\sim_n$$
$$= f([id]_n) \cdot \mu \qquad f \text{ respects } M \text{-action}$$
$$= x \cdot \mu$$

holds for any $\mu \in M$. It is clear from this formula that such an element $x \in X$ must satisfy $\dim(x) \leq n$. Conversely, if $x \in X$ satisfies $\dim(x) \leq n$ then the assignation $[\mu]_n \mapsto x \cdot \mu$ can be easily shown to be a well-defined morphism $M/\sim_n \to X$ in M-Set. This establishes the desired bijection, and its naturality is straightforward to check.

Corollary 4.9. Applying the Kan construction to the functor $F : \Delta_+ \to M$ -Set yields the adjunction $U \dashv R$.

5. Comonadicity

Now we prove the main theorem.

Theorem 5.1. The left adjoint functor $U : \underline{sSet}_+ \to M - \underline{Set}$ is comonadic.

Proof. We will use a version of Beck's monadicity theorem. Note that \underline{sSet}_+ is complete and in particular has U-split equalisers.

Consider the commutative square (1). Since both V and \coprod are conservative, so is U. Also, since V and \coprod preserve connected limits and W reflects them, it follows that U preserves them. In particular, U preserves U-split equalisers. This completes the proof.

The induced comonad \mathbb{G} on M-<u>Set</u> may be discribed as follows. The functor part G sends each $X \in M$ -<u>Set</u> to

$$GX = \{(x, n) \in X \times \omega : \dim(x) \le n\}$$

4

equipped with the M-action

$$(x,n) \cdot \mu = (x \cdot \mu, \max(\mu^{-1}[n])).$$

The morphism $Gf: GX \to GY$ sends (x, n) to (f(x), n). The counit $GX \to X$ is given by the first projection $(x, n) \mapsto x$, and the comultiplication $GX \to GGX$ is given by $(x, n) \mapsto ((x, n), n)$.

Acknowledgements

The idea of relating (augmented) simplicial sets to the monoid of eventually consecutive endomorphisms on ω is originally due to Ross Street. The author would like to thank him for explaining the idea to the author in a post-seminar discussion.